Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108171

RESUMO

Previous research has shown that cyclin-dependent kinases (Cdks) that play physiological roles in cell cycle regulation become activated in post-mitotic neurons after ischemic stroke, resulting in apoptotic neuronal death. In this article, we report our results using the widely used oxygen-glucose deprivation (OGD) in vitro model of ischemic stroke on primary mouse cortical neurons to investigate whether Cdk7, as part of the Cdk-activating kinase (CAK) complex that activates cell cycle Cdks, might be a regulator of ischemic neuronal death and may potentially constitute a therapeutic target for neuroprotection. We found no evidence of neuroprotection with either pharmacological or genetic invalidation of Cdk7. Despite the well-established idea that apoptosis contributes to cell death in the ischemic penumbra, we also found no evidence of apoptosis in the OGD model. This could explain the absence of neuroprotection following Cdk7 invalidation in this model. Neurons exposed to OGD seem predisposed to die in an NMDA receptor-dependent manner that could not be prevented further downstream. Given the direct exposure of neurons to anoxia or severe hypoxia, it is questionable how relevant OGD is for modeling the ischemic penumbra. Due to remaining uncertainties about cell death after OGD, caution is warranted when using this in vitro model to identify new stroke therapies.


Assuntos
AVC Isquêmico , Oxigênio , Camundongos , Animais , Oxigênio/metabolismo , Glucose/metabolismo , Apoptose/genética , Morte Celular/fisiologia , Hipóxia , Quinases Ciclina-Dependentes , Células Cultivadas
2.
Cell Rep ; 41(5): 111578, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323247

RESUMO

Long-term maintenance of the adult neurogenic niche depends on proper regulation of entry and exit from quiescence. Neural stem cell (NSC) transition from quiescence to activation is a complex process requiring precise cell-cycle control coordinated with transcriptional and morphological changes. How NSC fate transitions in coordination with the cell-cycle machinery remains poorly understood. Here we show that the Rb/E2F axis functions by linking the cell-cycle machinery to pivotal regulators of NSC fate. Deletion of Rb family proteins results in activation of NSCs, inducing a transcriptomic transition toward activation. Deletion of their target activator E2Fs1/3 results in intractable quiescence and cessation of neurogenesis. We show that the Rb/E2F axis mediates these fate transitions through regulation of factors essential for NSC function, including REST and ASCL1. Thus, the Rb/E2F axis is an important regulator of NSC fate, coordinating cell-cycle control with NSC activation and quiescence fate transitions.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/metabolismo , Neurogênese/fisiologia , Divisão Celular , Ciclo Celular , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
3.
Glia ; 70(9): 1652-1665, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35488490

RESUMO

Mechanisms regulating oligodendrocyte differentiation, developmental myelination and myelin maintenance in adulthood are complex and still not completely described. Their understanding is crucial for the development of new protective or therapeutic strategies in demyelinating pathologies such as multiple sclerosis. In this perspective, we have investigated the role of Cyclin-dependent kinase 7 (Cdk7), a kinase involved in cell-cycle progression and transcription regulation, in the oligodendroglial lineage. We generated a conditional knock-out mouse model in which Cdk7 is invalidated in post-mitotic oligodendrocytes. At the end of developmental myelination, the number and diameter of myelinated axons, as well as the myelin structure, thickness and protein composition, were normal. However, in young adult and in aged mice, there was a higher number of small caliber myelinated axons associated with a decreased mean axonal diameter, myelin sheaths of large caliber axons were thinner, and the level of some major myelin-associated proteins was reduced. These defects were accompanied by the appearance of an abnormal clasping phenotype. We also used an in vitro oligodendroglial model and showed that Cdk7 pharmacological inhibition led to an altered myelination-associated morphological modification combined with a decreased expression of myelin-specific genes. Altogether, we identified novel functions for Cdk7 in CNS myelination.


Assuntos
Quinases Ciclina-Dependentes , Bainha de Mielina , Oligodendroglia , Animais , Sistema Nervoso Central/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Expressão Gênica , Camundongos , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
4.
Cell Mol Life Sci ; 77(22): 4553-4571, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32476056

RESUMO

A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.


Assuntos
Ciclo Celular/fisiologia , Mitose/fisiologia , Neurônios/fisiologia , Animais , Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Humanos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Neurônios/metabolismo
5.
Cell Mol Life Sci ; 75(20): 3817-3827, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29728713

RESUMO

Neural stem cells give rise to granule dentate neurons throughout life in the hippocampus. Upon activation, these stem cells generate fast proliferating progenitors that complete several rounds of divisions before differentiating into neurons. Although the mechanisms regulating the activation of stem cells have been intensively studied, little attention has been given so far to the intrinsic machinery allowing the expansion of the progenitor pool. The cell cycle protein Cdk6 positively regulates the proliferation of hippocampal progenitors, but the mechanism involved remains elusive. Whereas Cdk6 functions primarily as a cell cycle kinase, it can also act as transcriptional regulator in cancer cells and hematopoietic stem cells. Using mouse genetics, we show here that the function of Cdk6 in hippocampal neurogenesis relies specifically on its kinase activity. The present study also reveals a specific regulatory mechanism for Cdk6 in hippocampal progenitors. In contrast to the classical model of the cell cycle, we observe that the Cip/Kip family member p27, rather than the Ink4 family, negatively regulates Cdk6 in the adult hippocampus. Altogether, our data uncover a unique, cell type-specific regulatory mechanism controlling the expansion of hippocampal progenitors, where Cdk6 kinase activity is modulated by p27.


Assuntos
Proliferação de Células , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Animais , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p18/deficiência , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Giro Denteado/metabolismo , Giro Denteado/patologia , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese
6.
Cell Death Discov ; 4: 43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29581894

RESUMO

Cell cycle proteins are mainly expressed by dividing cells. However, it is well established that these molecules play additional non-canonical activities in several cell death contexts. Increasing evidence shows expression of cell cycle regulating proteins in post-mitotic cells, including mature neurons, following neuronal insult. Several cyclin-dependent kinases (Cdks) have already been shown to mediate ischemic neuronal death but Cdk1, a major cell cycle G2/M regulator, has not been investigated in this context. We therefore examined the role of Cdk1 in neuronal cell death following cerebral ischemia, using both in vitro and in vivo genetic and pharmacological approaches. Exposure of primary cortical neurons cultures to 4 h of oxygen-glucose deprivation (OGD) resulted in neuronal cell death and induced Cdk1 expression. Neurons from Cdk1-cKO mice showed partial resistance to OGD-induced neuronal cell death. Addition of R-roscovitine to the culture medium conferred neuroprotection against OGD-induced neuronal death. Transient 1-h occlusion of the cerebral artery (MCAO) also leads to Cdk1 expression and activation. Cdk1-cKO mice displayed partial resistance to transient 1-h MCAO. Moreover, systemic delivery of R-roscovitine was neuroprotective following transient 1-h MCAO. This study demonstrates that promising neuroprotective therapies can be considered through inhibition of the cell cycle machinery and particularly through pharmacological inhibition of Cdk1.

7.
Hippocampus ; 26(11): 1379-1392, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27325572

RESUMO

In mammals, hippocampal dentate gyrus granule cells (DGCs) constitute a particular neuronal population produced both during embryogenesis and adult life, and play key roles in neural plasticity and memory. However, the molecular mechanisms regulating neurogenesis in the dentate lineage throughout development and adulthood are still not well understood. The Retinoblastoma protein (RB), a transcriptional repressor primarily involved in cell cycle control and cell death, plays crucial roles during cortical development but its function in the formation and maintenance of DGCs remains unknown. Here, we show that loss of RB during embryogenesis induces massive ectopic proliferation and delayed cell cycle exit of young DGCs specifically at late developmental stages but without affecting stem cells. This phenotype was partially counterbalanced by increased cell death. Similarly, during adulthood, loss of RB causes ectopic proliferation of newborn DGCs and dramatically impairs their survival. These results demonstrate a crucial role for RB in the generation and the survival of DGCs in the embryonic and the adult brain. © 2016 Wiley Periodicals, Inc.


Assuntos
Giro Denteado/citologia , Giro Denteado/embriologia , Neurogênese/genética , Neurônios/fisiologia , Proteína do Retinoblastoma/metabolismo , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Embrião de Mamíferos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina/genética , Nestina/metabolismo , Proteína do Retinoblastoma/genética , Fatores de Transcrição SOXB1/metabolismo
8.
Sci Rep ; 6: 20230, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847607

RESUMO

Adult neural stem cells (aNSCs) are relatively quiescent populations that give rise to distinct neuronal subtypes throughout life, yet, at a very low rate and restricted differentiation potential. Thus, identifying the molecular mechanisms that control their cellular expansion is critical for regeneration after brain injury. Loss of the Retinoblastoma protein, Rb, leads to several defects in cell cycle as well as neuronal differentiation and migration during brain development. Here, we investigated the role of Rb during adult neurogenesis in the olfactory bulb (OB) by inducing its temporal deletion in aNSCs and progenitors. Loss of Rb was associated with increased proliferation of adult progenitors in the subventricular zone (SVZ) and the rostral migratory stream (RMS) but did not alter self-renewal of aNSCs or neuroblasts subsequent migration and terminal differentiation. Hence, one month after their birth, Rb-null neuroblasts were able to differentiate into distinct subtypes of GABAergic OB interneurons but were gradually lost after 3 months. Similarly, Rb controlled aNSCs/progenitors proliferation in vitro without affecting their differentiation capacity. This enhanced SVZ/OB neurogenesis associated with loss of Rb was only transient and negatively affected by increased apoptosis indicating a critical requirement for Rb in the long-term survival of adult-born OB interneurons.


Assuntos
Bulbo Olfatório/citologia , Proteína do Retinoblastoma/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteína do Retinoblastoma/genética , Tamoxifeno/farmacologia , Fatores de Transcrição/metabolismo
9.
Front Neurosci ; 9: 458, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696816

RESUMO

Stroke affects one in every six people worldwide, and is the leading cause of adult disability. After stroke, some limited spontaneous recovery occurs, the mechanisms of which remain largely unknown. Multiple, parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. For years, clinical studies have tried to use exogenous cell therapy as a means of brain repair, with varying success. Since the rediscovery of adult neurogenesis and the identification of adult neural stem cells in the late nineties, one promising field of investigation is focused upon triggering and stimulating this self-repair system to replace the neurons lost following brain injury. For instance, it is has been demonstrated that the adult brain has the capacity to produce large numbers of new neurons in response to stroke. The purpose of this review is to provide an updated overview of stroke-induced adult neurogenesis, from a cellular and molecular perspective, to its impact on brain repair and functional recovery.

10.
Stem Cells ; 32(6): 1398-407, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24510844

RESUMO

New cells are continuously generated from immature proliferating cells in the adult brain in two neurogenic niches known as the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the lateral ventricles. However, the molecular mechanisms regulating their proliferation, differentiation, migration and functional integration of newborn neurons in pre-existing neural network remain largely unknown. Forkhead box (Fox) proteins belong to a large family of transcription factors implicated in a wide variety of biological processes. Recently, there has been accumulating evidence that several members of this family of proteins play important roles in adult neurogenesis. Here, we describe recent advances in our understanding of regulation provided by Fox factors in adult neurogenesis, and evaluate the potential role of Fox proteins as targets for therapeutic intervention in neurodegenerative diseases.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Neurogênese , Transdução de Sinais , Adulto , Animais , Sequência de Bases , Fatores de Transcrição Forkhead/química , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA