Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328769

RESUMO

Atherosclerosis is the main risk factor for cardiovascular disease (CVD), which is the leading cause of mortality worldwide. Atherosclerosis is initiated by endothelium activation and, followed by a cascade of events (accumulation of lipids, fibrous elements, and calcification), triggers the vessel narrowing and activation of inflammatory pathways. The resultant atheroma plaque, along with these processes, results in cardiovascular complications. This review focuses on the different stages of atherosclerosis development, ranging from endothelial dysfunction to plaque rupture. In addition, the post-transcriptional regulation and modulation of atheroma plaque by microRNAs and lncRNAs, the role of microbiota, and the importance of sex as a crucial risk factor in atherosclerosis are covered here in order to provide a global view of the disease.


Assuntos
Aterosclerose , Calcinose , Doenças Cardiovasculares , Placa Aterosclerótica , Aterosclerose/metabolismo , Calcinose/complicações , Doenças Cardiovasculares/metabolismo , Humanos , Fatores de Risco
2.
Small ; 18(13): e2105915, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156292

RESUMO

Cardiovascular disease, the leading cause of mortality worldwide, is primarily caused by atherosclerosis, which is characterized by lipid and inflammatory cell accumulation in blood vessels and carotid intima thickening. Although disease management has improved significantly, new therapeutic strategies focused on accelerating atherosclerosis regression must be developed. Atherosclerosis models mimicking in vivo-like conditions provide essential information for research and new advances toward clinical application. New nanotechnology-based therapeutic opportunities have emerged with apoA-I nanoparticles (recombinant/reconstituted high-density lipoproteins, rHDL) as ideal carriers to deliver molecules and the discovery that microRNAs participate in atherosclerosis establishment and progression. Here, a therapeutic strategy to improve cholesterol efflux is developed based on a two-step administration of rHDL consisting of a first dose of antagomiR-33a-loaded rHDLs to induce adenosine triphosphate-binding cassette transporters A1 overexpression, followed by a second dose of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine rHDLs, which efficiently remove cholesterol from foam cells. A triple-cell 2D-atheroma plaque model reflecting the cellular complexity of atherosclerosis is used to improve efficiency of the nanoparticles in promoting cholesterol efflux. The results show that sequential administration of rHDL potentiates cholesterol efflux indicating that this approach may be used in vivo to more efficiently target atherosclerotic lesions and improve prognosis of the disease.


Assuntos
Aterosclerose , MicroRNAs , Aterosclerose/tratamento farmacológico , Colesterol , Células Espumosas , Humanos , Macrófagos , MicroRNAs/uso terapêutico
3.
Hum Mol Genet ; 31(13): 2155-2163, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35088080

RESUMO

Multiple sclerosis (MS) is a complex and demyelinating disease of the central nervous system. One of the challenges of the post-genome-wide association studies (GWAS) era is to understand the molecular basis of statistical associations to reveal gene networks and potential therapeutic targets. The L3MBTL3 locus has been associated with MS risk by GWAS. To identify the causal variant of the locus, we performed fine mapping in a cohort of 3440 MS patients and 1688 healthy controls. The variant that best explained the association was rs6569648 (P = 4.13E-10, odds ratio = 0.71, 95% confidence interval (CI) = 0.64-0.79), which tagged rs7740107, located in intron 7 of L3MBTL3. The rs7740107 (A/T) variant has been reported to be the best expression and splice quantitative trait locus (eQTL and sQTL) of the region in up to 35 human genotype-tissue expression (GTEx) tissues. By sequencing RNA from blood of 17 MS patients and quantification by digital qPCR, we determined that this eQTL/sQTL originated from the expression of a novel short transcript starting in intron 7 near rs7740107. The short transcript was translated into three proteins starting at different translation initiation codons. These N-terminal truncated proteins lacked the region where L3MBTL3 interacts with the transcriptional regulator Recombination Signal Binding Protein for Immunoglobulin Kappa J Region which, in turn, regulates the Notch signalling pathway. Our data and other functional studies suggest that the genetic mechanism underlying the MS association of rs7740107 affects not only the expression of L3MBTL3 isoforms, but might also involve the Notch signalling pathway.


Assuntos
Estudo de Associação Genômica Ampla , Esclerose Múltipla , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Humanos , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
4.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540814

RESUMO

Vascular smooth muscle cells (VSMCs) provide vital contractile force within blood vessel walls, yet can also propagate cardiovascular pathologies through proliferative and pro-inflammatory activities. Such phenotypes are driven, in part, by the diverse effects of long non-coding RNAs (lncRNAs) on gene expression. However, lncRNA characterisation in VSMCs in pathological states is hampered by incomplete lncRNA representation in reference annotation. We aimed to improve lncRNA representation in such contexts by assembling non-reference transcripts in RNA sequencing datasets describing VSMCs stimulated in vitro with cytokines, growth factors, or mechanical stress, as well as those isolated from atherosclerotic plaques. All transcripts were then subjected to a rigorous lncRNA prediction pipeline. We substantially improved coverage of lncRNAs responding to pro-mitogenic stimuli, with non-reference lncRNAs contributing 21-32% for each dataset. We also demonstrate non-reference lncRNAs were biased towards enriched expression within VSMCs, and transcription from enhancer sites, suggesting particular relevance to VSMC processes, and the regulation of neighbouring protein-coding genes. Both VSMC-enriched and enhancer-transcribed lncRNAs were large components of lncRNAs responding to pathological stimuli, yet without novel transcript discovery 33-46% of these lncRNAs would remain hidden. Our comprehensive VSMC lncRNA repertoire allows proper prioritisation of candidates for characterisation and exemplifies a strategy to broaden our knowledge of lncRNA across a range of disease states.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , RNA Longo não Codificante/análise , Aorta/citologia , Vasos Coronários/citologia , Citocinas/farmacologia , Conjuntos de Dados como Assunto , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , RNA Longo não Codificante/isolamento & purificação , RNA-Seq , Estresse Mecânico , Transcrição Gênica/efeitos dos fármacos , Transcriptoma
5.
Front Immunol ; 12: 816930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111166

RESUMO

Intronic single-nucleotide polymorphisms (SNPs) in the ANKRD55 gene are associated with the risk for multiple sclerosis (MS) and rheumatoid arthritis by genome-wide association studies (GWAS). The risk alleles have been linked to higher expression levels of ANKRD55 and the neighboring IL6ST (gp130) gene in CD4+ T lymphocytes of healthy controls. The biological function of ANKRD55, its role in the immune system, and cellular sources of expression other than lymphocytes remain uncharacterized. Here, we show that monocytes gain capacity to express ANKRD55 during differentiation in immature monocyte-derived dendritic cells (moDCs) in the presence of interleukin (IL)-4/granulocyte-macrophage colony-stimulating factor (GM-CSF). ANKRD55 expression levels are further enhanced by retinoic acid agonist AM580 but downregulated following maturation with interferon (IFN)-γ and lipopolysaccharide (LPS). ANKRD55 was detected in the nucleus of moDC in nuclear speckles. We also analyzed the adjacent IL6ST, IL31RA, and SLC38A9 genes. Of note, in healthy controls, MS risk SNP genotype influenced ANKRD55 and IL6ST expression in immature moDC in opposite directions to that in CD4+ T cells. This effect was stronger for a partially correlated SNP, rs13186299, that is located, similar to the main MS risk SNPs, in an ANKRD55 intron. Upon analysis in MS patients, the main GWAS MS risk SNP rs7731626 was associated with ANKRD55 expression levels in CD4+ T cells. MoDC-specific ANKRD55 and IL6ST mRNA levels showed significant differences according to the clinical form of the disease, but, in contrast to healthy controls, were not influenced by genotype. We also measured serum sgp130 levels, which were found to be higher in homozygotes of the protective allele of rs7731626. Our study characterizes ANKRD55 expression in moDC and indicates monocyte-to-dendritic cell (Mo-DC) differentiation as a process potentially influenced by MS risk SNPs.


Assuntos
Proteínas de Transporte/genética , Receptor gp130 de Citocina/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Variação Genética , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Alelos , Autoimunidade/genética , Benzoatos/farmacologia , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tetra-Hidronaftalenos/farmacologia
6.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317170

RESUMO

Carotid atherosclerotic plaque rupture can lead to cerebrovascular accident (CVA). By comparing RNA-Seq data from vascular smooth muscle cells (VSMC) extracted from carotid atheroma surgically excised from a group of asymptomatic and symptomatic subjects, we identified more than 700 genomic variants associated with symptomatology (p < 0.05). From these, twelve single nucleotide polymorphisms (SNPs) were selected for further validation. Comparing genotypes of a hospital-based cohort of asymptomatic with symptomatic patients, an exonic SNP in the BIRC6 (BRUCE/Apollon) gene, rs35286811, emerged as significantly associated with CVA symptomatology (p = 0.002; OR = 2.24). Moreover, BIRC6 mRNA levels were significantly higher in symptomatic than asymptomatic subjects upon measurement by qPCR in excised carotid atherosclerotic tissue (p < 0.0001), and significantly higher in carriers of the rs35286811 risk allele (p < 0.0001). rs35286811 is a proxy of a GWAS SNP reported to be associated with red cell distribution width (RDW); RDW was increased in symptomatic patients (p < 0.03), but was not influenced by the rs35286811 genotype in our cohort. BIRC6 is a negative regulator of both apoptosis and autophagy. This work introduces BIRC6 as a novel genetic risk factor for stroke, and identifies autophagy as a genetically regulated mechanism of carotid plaque vulnerability.


Assuntos
Artérias Carótidas/metabolismo , Proteínas Inibidoras de Apoptose/genética , Placa Aterosclerótica/genética , Polimorfismo de Nucleotídeo Único , Artérias Carótidas/patologia , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
7.
Biomedicines ; 8(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977626

RESUMO

Cardiovascular disease (CVD), the leading cause of mortality worldwide is primarily caused by atherosclerosis, which is promoted by the accumulation of low-density lipoproteins into the intima of large arteries. Multiple nanoparticles mimicking natural HDL (rHDL) have been designed to remove cholesterol excess in CVD therapy. The goal of this investigation was to assess the cholesterol efflux efficiency of rHDLs with different lipid compositions, mimicking different maturation stages of high-density lipoproteins (HDLs) occurring in vivo. METHODS: the cholesterol efflux activity of soybean PC (Soy-PC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DPPC:Chol:1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (LysoPC) and DPPC:18:2 cholesteryl ester (CE):LysoPC rHDLs was determined in several cell models to investigate the contribution of lipid composition to the effectiveness of cholesterol removal. RESULTS: DPPC rHDLs are the most efficient particles, inducing cholesterol efflux in all cellular models and in all conditions the effect was potentiated when the ABCA1 transporter was upregulated. CONCLUSIONS: DPPC rHDLs, which resemble nascent HDL, are the most effective particles in inducing cholesterol efflux due to the higher physical binding affinity of cholesterol to the saturated long-chain-length phospholipids and the favored cholesterol transfer from a highly positively curved bilayer, to an accepting planar bilayer such as DPPC rHDLs. The physicochemical characteristics of rHDLs should be taken into consideration to design more efficient nanoparticles to promote cholesterol efflux.

8.
Brain ; 143(5): 1414-1430, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282893

RESUMO

Primary progressive multiple sclerosis is a poorly understood disease entity with no specific prognostic biomarkers and scarce therapeutic options. We aimed to identify disease activity biomarkers in multiple sclerosis by performing an RNA sequencing approach in peripheral blood mononuclear cells from a discovery cohort of 44 untreated patients with multiple sclerosis belonging to different clinical forms and activity phases of the disease, and 12 healthy control subjects. A validation cohort of 58 patients with multiple sclerosis and 26 healthy control subjects was included in the study to replicate the RNA sequencing findings. The RNA sequencing revealed an interleukin 1 beta (IL1B) signature in patients with primary progressive multiple sclerosis. Subsequent immunophenotyping pointed to blood monocytes as responsible for the IL1B signature observed in this group of patients. Functional experiments at baseline measuring apoptosis-associated speck-like protein containing a CARD (ASC) speck formation showed that the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome was overactive in monocytes from patients with primary progressive multiple sclerosis, and canonical NLRP3 inflammasome activation with a combination of ATP plus lipopolysaccharide was associated with increased IL1B production in this group of patients. Primary progressive multiple sclerosis patients with high IL1B gene expression levels in peripheral blood mononuclear cells progressed significantly faster compared to patients with low IL1B levels based on the time to reach an EDSS of 6.0 and the Multiple Sclerosis Severity Score. In agreement with peripheral blood findings, both NLRP3 and IL1B expression in brain tissue from patients with primary progressive multiple sclerosis was mainly restricted to cells of myeloid lineage. Treatment of mice with a specific NLRP3 inflammasome inhibitor attenuated established experimental autoimmune encephalomyelitis disease severity and improved CNS histopathology. NLRP3 inflammasome-specific inhibition was also effective in reducing axonal damage in a model of lipopolysaccharide-neuroinflammation using organotypic cerebellar cultures. Altogether, these results point to a role of IL1B and the NLRP3 inflammasome as prognostic biomarker and potential therapeutic target, respectively, in patients with primary progressive multiple sclerosis.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Adulto , Animais , Biomarcadores/análise , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico
9.
J Clin Med ; 9(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110891

RESUMO

Genome-wide association studies and meta-analysis have contributed to the identification of more than 200 loci associated with multiple sclerosis (MS). However, a proportion of MS heritability remains unknown. We aimed to uncover new genetic variants associated with MS and determine their functional effects. For this, we resequenced the exons and regulatory sequences of 14 MS risk genes in a cohort of MS patients and healthy individuals (n = 1,070) and attempted to validate a selection of signals through genotyping in an independent cohort (n = 5,138). We identified three new MS-associated variants at C-X-C motif chemokine receptor 5 (CXCR5), Ts translation elongation factor, mitochondrial (TSFM) and cytochrome P450 family 24 subfamily A member 1 (CYP24A1). Rs10892307 resulted in a new signal at the CXCR5 region that explains one of the associations with MS within the locus. This polymorphism and three others in high linkage disequilibrium mapped within regulatory regions. Of them, rs11602393 showed allele-dependent enhancer activity in the forward orientation as determined by luciferase reporter assays. Immunophenotyping using peripheral blood mononuclear cells from MS patients associated the minor allele of rs10892307 with increased percentage of regulatory T cells expressing CXCR5. This work reports a new signal for the CXCR5 MS risk locus and points to rs11602393 as the causal variant. The expansion of CXCR5+ circulating regulatory T cells induced by this variant could cause its MS association.

10.
Cells ; 9(1)2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936765

RESUMO

The IL22RA2 locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly (p = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by IL22RA2 (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset (p = 3.17 × 10-4). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50%-60% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS.


Assuntos
Predisposição Genética para Doença , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética , Sinais Direcionadores de Proteínas/genética , Receptores de Interleucina/genética , Adulto , Sequência de Aminoácidos , Simulação por Computador , Bases de Dados Genéticas , Frequência do Gene/genética , Células HEK293 , Humanos , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Interleucina/química , Fatores de Risco
11.
Front Immunol ; 10: 2067, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620119

RESUMO

The ankyrin repeat domain-55 (ANKRD55) gene contains intronic single nucleotide polymorphisms (SNPs) associated with risk to contract multiple sclerosis, rheumatoid arthritis or other autoimmune disorders. Risk alleles of these SNPs are associated with higher levels of ANKRD55 in CD4+ T cells. The biological function of ANKRD55 is unknown, but given that ankyrin repeat domains constitute one of the most common protein-protein interaction platforms in nature, it is likely to function in complex with other proteins. Thus, identification of its protein interactomes may provide clues. We identified ANKRD55 interactomes via recombinant overexpression in HEK293 or HeLa cells and mass spectrometry. One hundred forty-eight specifically interacting proteins were found in total protein extracts and 22 in extracts of sucrose gradient-purified nuclei. Bioinformatic analysis suggested that the ANKRD55-protein partners from total protein extracts were related to nucleotide and ATP binding, enriched in nuclear transport terms and associated with cell cycle and RNA, lipid and amino acid metabolism. The enrichment analysis of the ANKRD55-protein partners from nuclear extracts is related to sumoylation, RNA binding, processes associated with cell cycle, RNA transport, nucleotide and ATP binding. The interaction between overexpressed ANKRD55 isoform 001 and endogenous RPS3, the cohesins SMC1A and SMC3, CLTC, PRKDC, VIM, ß-tubulin isoforms, and 14-3-3 isoforms were validated by western blot, reverse immunoprecipitaton and/or confocal microscopy. We also identified three phosphorylation sites in ANKRD55, with S436 exhibiting the highest score as likely 14-3-3 binding phosphosite. Our study suggests that ANKRD55 may exert function(s) in the formation or architecture of multiple protein complexes, and is regulated by (de)phosphorylation reactions. Based on interactome and subcellular localization analysis, ANKRD55 is likely transported into the nucleus by the classical nuclear import pathway and is involved in mitosis, probably via effects associated with mitotic spindle dynamics.


Assuntos
Proteínas de Transporte/imunologia , Núcleo Celular/metabolismo , Mitose/imunologia , Mapas de Interação de Proteínas/imunologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Proteínas de Transporte/genética , Núcleo Celular/genética , Células HEK293 , Células HeLa , Humanos , Mitose/genética , Polimorfismo de Nucleotídeo Único
12.
PLoS Genet ; 15(6): e1008180, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170158

RESUMO

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients.


Assuntos
Predisposição Genética para Doença , Inflamação/genética , Esclerose Múltipla/genética , Transcriptoma/genética , Adulto , Códon sem Sentido , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Exoma/genética , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina/genética , Bainha de Mielina/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Sequenciamento do Exoma , Adulto Jovem
13.
Int J Mol Sci ; 20(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108847

RESUMO

Of the three interleukin-22 binding protein (IL-22BP) isoforms produced by the human IL22RA2 gene, IL-22BPi2 and IL-22BPi3 are capable of neutralizing IL-22. The longest isoform, IL-22BPi1, does not bind IL-22, is poorly secreted, and its retention within the endoplasmic reticulum (ER) is associated with induction of an unfolded protein response (UPR). Therapeutic modulation of IL-22BPi2 and IL-22BPi3 production may be beneficial in IL-22-dependent disorders. Recently, we identified the ER chaperones GRP94 and cyclophilin B in the interactomes of both IL-22BPi1 and IL-22BPi2. In this study, we investigated whether secretion of the IL-22BP isoforms could be modulated by pharmacological targeting of GRP94 and cyclophilin B, either by means of geldanamycin, that binds to the ADP/ATP pocket shared by HSP90 paralogs, or by cyclosporin A, which causes depletion of ER cyclophilin B levels through secretion. We found that geldanamycin and its analogs did not influence secretion of IL-22BPi2 or IL-22BPi3, but significantly enhanced intracellular and secreted levels of IL-22BPi1. The secreted protein was heterogeneously glycosylated, with both high-mannose and complex-type glycoforms present. In addition, cyclosporine A augmented the secretion of IL-22BPi1 and reduced that of IL-22BPi2 and IL-22BPi3. Our data indicate that the ATPase activity of GRP94 and cyclophilin B are instrumental in ER sequestration and degradation of IL-22BPi1, and that blocking these factors mobilizes IL-22BPi1 toward the secretory route.


Assuntos
Benzoquinonas/farmacologia , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Lactamas Macrocíclicas/farmacologia , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Ciclofilinas/química , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Glicosilação , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Monócitos/metabolismo , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteólise , Receptores de Interleucina/química , Receptores de Interleucina/genética
14.
Cells ; 7(3)2018 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-29562638

RESUMO

Vascular smooth muscle cells (VSMCs) are central players in carotid atherosclerosis plaque development. Although the precise mechanisms involved in plaque destabilization are not completely understood, it is known that VSMC proliferation and migration participate in plaque stabilization. In this study, we analyzed expression patterns of genes involved in carotid atherosclerosis development (e.g., transcription factors of regulation of SMC genes) of VSMCs located inside or outside the plaque lesion that may give clues about changes in phenotypic plasticity during atherosclerosis. VSMCs were isolated from 39 carotid plaques extracted from symptomatic and asymptomatic patients by endarterectomy. Specific biomarker expression, related with VSMC phenotype, was analyzed by qPCR, western immunoblot, and confocal microscopy. MYH11, CNN1, SRF, MKL2, and CALD1 were significantly underexpressed in VSMCs from plaques compared with VSMCs from a macroscopically intact (MIT) region, while SPP1, KLF4, MAPLC3B, CD68, and LGALS3 were found significantly upregulated in plaque VSMCs versus MIT VSMCs. The gene expression pattern of arterial VSMCs from a healthy donor treated with 7-ketocholesterol showed high similarity with the expression pattern of carotid plaque VSMCs. Our results indicate that VSMCs isolated from plaque show a typical SMC dedifferentiated phenotype with macrophage-like features compared with VSMCs isolated from a MIT region of the carotid artery. Additionally, MYH11, KLF5, and SPP1 expression patterns were found to be associated with symptomatology of human carotid atherosclerosis.

15.
Cytokine Growth Factor Rev ; 39: 62-70, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396056

RESUMO

Inflammation in carotid atherosclerotic plaque is linked to plaque rupture and cerebrovascular accidents. The balance between pro- and anti-inflammatory mediators governs development of the plaque, and may mediate enhancement of lesion broadening or, on the contrary, delay progression. In addition to macrophages and endothelial cells, smooth muscle cells (SMCs), which are the dominant cell subset in advanced plaques, are crucial players in carotid atherosclerosis development given their ability to differentiate into distinct phenotypes in reponse to specific signals received from the environment of the lesion. Carotid atheroma SMCs actively contribute to the inflammation in the lesion because of their acquired capacity to produce inflammatory mediators. We review the successive stages of carotid atheroma plaque formation via fatty streak early-stage toward more advanced rupture-prone lesions and document involvement of cytokines and chemokines and their cellular sources and targets in plaque progression and rupture.


Assuntos
Doenças das Artérias Carótidas/patologia , Inflamação/complicações , Miócitos de Músculo Liso/citologia , Placa Aterosclerótica/patologia , Animais , Células Endoteliais/citologia , Humanos , Mediadores da Inflamação , Macrófagos/citologia , Camundongos
16.
Front Immunol ; 9: 2934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619294

RESUMO

The human IL22RA2 gene co-produces three protein isoforms in dendritic cells [IL-22 binding protein isoform-1 (IL-22BPi1), IL-22BPi2, and IL-22BPi3]. Two of these, IL-22BPi2 and IL-22BPi3, are capable of neutralizing the biological activity of IL-22. The function of IL-22BPi1, which differs from IL-22BPi2 through an in-frame 32-amino acid insertion provided by an alternatively spliced exon, remains unknown. Using transfected human cell lines, we demonstrate that IL-22BPi1 is secreted detectably, but at much lower levels than IL-22BPi2, and unlike IL-22BPi2 and IL-22BPi3, is largely retained in the endoplasmic reticulum (ER). As opposed to IL-22BPi2 and IL-22BPi3, IL-22BPi1 is incapable of neutralizing or binding to IL-22 measured in bioassay or assembly-induced IL-22 co-folding assay. We performed interactome analysis to disclose the mechanism underlying the poor secretion of IL-22BPi1 and identified GRP78, GRP94, GRP170, and calnexin as main interactors. Structure-function analysis revealed that, like IL-22BPi2, IL-22BPi1 binds to the substrate-binding domain of GRP78 as well as to the middle domain of GRP94. Ectopic expression of wild-type GRP78 enhanced, and ATPase-defective GRP94 mutant decreased, secretion of both IL-22BPi1 and IL-22BPi2, while neither of both affected IL-22BPi3 secretion. Thus, IL-22BPi1 and IL-22BPi2 are bona fide clients of the ER chaperones GRP78 and GRP94. However, only IL-22BPi1 activates an unfolded protein response (UPR) resulting in increased protein levels of GRP78 and GRP94. Cloning of the IL22RA2 alternatively spliced exon into an unrelated cytokine, IL-2, bestowed similar characteristics on the resulting protein. We also found that CD14++/CD16+ intermediate monocytes produced a higher level of IL22RA2 mRNA than classical and non-classical monocytes, but this difference disappeared in immature dendritic cells (moDC) derived thereof. Upon silencing of IL22RA2 expression in moDC, GRP78 levels were significantly reduced, suggesting that native IL22RA2 expression naturally contributes to upregulating GRP78 levels in these cells. The IL22RA2 alternatively spliced exon was reported to be recruited through a single mutation in the proto-splice site of a Long Terminal Repeat retrotransposon sequence in the ape lineage. Our work suggests that positive selection of IL-22BPi1 was not driven by IL-22 antagonism as in the case of IL-22BPi2 and IL-22BPi3, but by capacity for induction of an UPR response.


Assuntos
Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de Interleucina/metabolismo , Resposta a Proteínas não Dobradas , Células Cultivadas , Células Dendríticas/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Interleucinas/química , Interleucinas/genética , Interleucinas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ligação Proteica , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores de Interleucina/química , Receptores de Interleucina/genética , Transdução de Sinais/genética , Interleucina 22
18.
Sci Rep ; 7(1): 3470, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615715

RESUMO

Carotid artery atherosclerosis is a risk factor to develop cerebrovascular disease. Atheroma plaque can become instable and provoke a cerebrovascular event or else remain stable as asymptomatic type. The exact mechanism involved in plaque destabilization is not known but includes among other events smooth muscle cell (SMC) differentiation. The goal of this study was to perform thorough analysis of gene expression differences in SMCs isolated from carotid symptomatic versus asymptomatic plaques. Comparative transcriptomics analysis of SMCs based on RNAseq technology identified 67 significant differentially expressed genes and 143 significant differentially expressed isoforms in symptomatic SMCs compared with asymptomatic. 37 of top-scoring genes were further validated by digital PCR. Enrichment and network analysis shows that the gene expression pattern of SMCs from stable asymptomatic plaques is suggestive for an osteogenic phenotype, while that of SMCs from unstable symptomatic plaque correlates with a senescence-like phenotype. Osteogenic-like phenotype SMCs may positively affect carotid atheroma plaque through participation in plaque stabilization via bone formation processes. On the other hand, plaques containing senescence-like phenotype SMCs may be more prone to rupture. Our results substantiate an important role of SMCs in carotid atheroma plaque disruption.


Assuntos
Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Transcriptoma , Idoso , Biomarcadores , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Doenças das Artérias Carótidas/metabolismo , Células Cultivadas , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Placa Aterosclerótica/metabolismo
20.
G3 (Bethesda) ; 6(7): 2073-9, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27194806

RESUMO

Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93-1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility.


Assuntos
Cromossomos Humanos Par 6/química , Esclerose Múltipla/genética , Plasminogênio/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Sequência de Aminoácidos , Estudos de Casos e Controles , Cromossomos Humanos Par 6/metabolismo , Exoma , Feminino , Expressão Gênica , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Linhagem , Fatores de Risco , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...