Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Exp Hematol Oncol ; 12(1): 104, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072918

RESUMO

BACKGROUND: Triple-Negative Breast Cancer is particularly aggressive, and its metastasis to the brain has a significant psychological impact on patients' quality of life, in addition to reducing survival. The development of brain metastases is particularly harmful in triple-negative breast cancer (TNBC). To date, the mechanisms that induce brain metastasis in TNBC are poorly understood. METHODS: Using a human blood-brain barrier (BBB) in vitro model, an in vitro 3D organotypic extracellular matrix, an ex vivo mouse brain slices co-culture and in an in vivo xenograft experiment, key step of brain metastasis were recapitulated to study TNBC behaviors. RESULTS: In this study, we demonstrated for the first time the involvement of the precursor of Nerve Growth Factor (proNGF) in the development of brain metastasis. More importantly, our results showed that proNGF acts through TrkA independent of its phosphorylation to induce brain metastasis in TNBC. In addition, we found that proNGF induces BBB transmigration through the TrkA/EphA2 signaling complex. More importantly, our results showed that combinatorial inhibition of TrkA and EphA2 decreased TBNC brain metastasis in a preclinical model. CONCLUSIONS: These disruptive findings provide new insights into the mechanisms underlying brain metastasis with proNGF as a driver of brain metastasis of TNBC and identify TrkA/EphA2 complex as a potential therapeutic target.

2.
Bioengineering (Basel) ; 9(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134989

RESUMO

The 3Rs guidelines recommend replacing animal testing with alternative models. One of the solutions proposed is organ-on-chip technology in which liver-on-chip is one of the most promising alternatives for drug screening and toxicological assays. The main challenge is to achieve the relevant in vivo-like functionalities of the liver tissue in an optimized cellular microenvironment. Here, we investigated the development of hepatic cells under dynamic conditions inside a 3D hydroscaffold embedded in a microfluidic device. The hydroscaffold is made of hyaluronic acid and composed of liver extracellular matrix components (galactosamine, collagen I/IV) with RGDS (Arg-Gly-Asp-Ser) sites for cell adhesion. The HepG2/C3A cell line was cultured under a flow rate of 10 µL/min for 21 days. After seeding, the cells formed aggregates and proliferated, forming 3D spheroids. The cell viability, functionality, and spheroid integrity were investigated and compared to static cultures. The results showed a 3D aggregate organization of the cells up to large spheroid formations, high viability and albumin production, and an enhancement of HepG2 cell functionalities. Overall, these results highlighted the role of the liver-on-chip model coupled with a hydroscaffold in the enhancement of cell functions and its potential for engineering a relevant liver model for drug screening and disease study.

3.
Int J Pharm ; 621: 121780, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35504427

RESUMO

Treatment for CNS related diseases are limited by the difficulty of the drugs to cross the blood-brain barrier (BBB). The functionalization of polymeric nanoparticles (NPs) coated with the surfactants polysorbate 80 (PS80) and poloxamer 188 (P188), have shown promising results as drugs carriers are able to cross the BBB on animal models. In this study, poly(lactide-co-glycolide) (PLGA) NPs coated with PS80 and P188, labelled with a fluorescent dye were tested on human pre-clinical in vitro model to evaluate and compare their uptake profiles, mechanisms of transport and crossing over human brain-like endothelial cells (BLECs) mimicking the human BBB. In addition, these NPs were produced using a method facilitating their reproducible production at high scale, the MicroJet reactor® technology. Results showed that both formulations were biocompatible and able to be internalized within the BLECs in different uptake profiles depending on their coating: P188 NP showed higher internalization capacity than PS80 NP. Both NPs uptakes were ATP-dependent, following more than one endocytosis pathway with colocalization in the early endosomes, ending with a NPs release in the brain compartment. Thus, both surfactant-coated PLGA NPs are interesting formulations for delivery to the brain through the BBB, presenting different uptake profiles.


Assuntos
Nanopartículas , Surfactantes Pulmonares , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Portadores de Fármacos/metabolismo , Células Endoteliais/metabolismo , Excipientes/metabolismo , Humanos , Poloxâmero/metabolismo , Polissorbatos , Surfactantes Pulmonares/metabolismo , Tensoativos/metabolismo
4.
Curr Comput Aided Drug Des ; 18(2): 81-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139795

RESUMO

BACKGROUND: The manual segmentation of cellular structures on Z-stack microscopic images is time-consuming and often inaccurate, highlighting the need to develop auto-segmentation tools to facilitate this process. OBJECTIVE: This study aimed to compare the performance of three different machine learning architectures, including random forest (RF), AdaBoost, and multi-layer perceptron (MLP), for the autosegmentation of nuclei in proliferating cervical cancer cells on Z-Stack cellular microscopy proliferation images provided by the HCS Pharma. The impact of using post-processing techniques, such as the StarDist plugin and majority voting, was also evaluated. METHODS: The RF, AdaBoost, and MLP algorithms were used to auto-segment the nuclei of cervical cancer cells on microscopic images at different Z-stack positions. Post-processing techniques were then applied to each algorithm. The performance of all algorithms was compared by an expert to globally generated ground truth by calculating the accuracy detection rate, the Dice coefficient, and the Jaccard index. RESULTS: RF achieved the best accuracy, followed by the AdaBoost and then the MLP. All algorithms achieved good pixel classifications except in regions whereby the nuclei overlapped. The majority voting and StarDist plugin improved the accuracy of the segmentation but did not resolve the nuclei overlap issue. The Z-Stack analysis revealed similar segmentation results to the Z-stack layer used to train the image. However, a worse performance was noted for segmentations performed on different Z-stack positions, which were not used to train the algorithms. CONCLUSION: All machine learning architectures provided a good segmentation of nuclei in cervical cancer cells but did not resolve the problem of overlapping nuclei and Z-stack segmentation. Further research should therefore evaluate the combined segmentation techniques and deep learning architectures to resolve these issues.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias do Colo do Útero , Algoritmos , Estruturas Celulares , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina
5.
Toxicol In Vitro ; 77: 105235, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34425233

RESUMO

The SH-SY5Y cell line is commonly used for the assessment of neurotoxicity in drug discovery. These neuroblastoma-derived cells can be differentiated into neurons using many methods. The present study has compared 24 of these differentiation methods on SH-SY5Y cells. After morphologic selection of the three most differentiating media (retinoic acid in 10% fetal bovine serum (FBS), staurosporine in 1% FBS medium, and cyclic adenosine monophosphate (cAMP) in B21-supplemented neurobasal medium), cells were analyzed for pan-neuronal and specific neuronal protein expression by fluorescent automated imaging. The response of SH-SY5Y to a set of compounds of known toxicity was examined in these culture conditions performed in 2D, and also in a 3D hyaluronic acid-based hydroscaffold™ which mimics the extracellular matrix. The extent of neuronal markers expression and the sensitivity to neurotoxic compounds varied according to the differentiation medium. The cAMP B21-supplemented neurobasal medium led to the higher neuronal differentiation, and the higher sensitivity to neurotoxic compounds. The culture in 3D modified the neurotoxic response, through a lower sensitivity of cells compared to the 2D culture. The in vitro differentiation environment influences the neurotoxic response of SH-SY5Y cells and thus should be considered carefully in research as well as in drug discovery.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Neurotoxinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Neuroblastoma/metabolismo , Testes de Toxicidade
6.
Pharmaceutics ; 13(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208550

RESUMO

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood-brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.

7.
J Vis Exp ; (155)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32009659

RESUMO

In recent years, cerebral pericytes have become the focus of extensive research in vascular biology and pathology. The importance of pericytes in blood brain barrier formation and physiology is now demonstrated but its molecular basis remains largely unknown. As the pathophysiological role of cerebral pericytes in neurological disorders is intriguing and of great importance, the in vitro models are not only sufficiently appropriate but also able to incorporate different techniques for these studies. Several methods have been proposed as in vitro models for the extraction of cerebral pericytes, although an antibiotic-free protocol with high output is desirable. Most importantly, a method that has increased output per extraction reduces the usage of more animals. Here, we propose a simple and efficient method for extracting cerebral pericytes with sufficiently high output. The mouse brain tissue homogenate is mixed with a BSA-dextran solution for the separation of the tissue debris and microvascular pellet. We propose a three-step separation followed by filtration to obtain a microvessel rich filtrate. With this method, the quantity of microvascular fragments obtained from 10 mice is sufficient to seed 9 wells (9.6 cm2 each) of a 6-well plate. Most interestingly with this protocol, the user can obtain 27 pericyte rich wells (9.6 cm2 each) in passage 2. The purity of the pericyte cultures are confirmed with the expression of classical pericyte markers: NG2, PDGFR-ß and CD146. This method demonstrates an efficient and feasible in vitro tool for physiological and pathophysiological studies on pericytes.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/fisiopatologia , Pericitos/metabolismo , Animais , Camundongos
8.
Leuk Res ; 71: 47-54, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30005184

RESUMO

Despite the high prevalence of central nervous system (CNS) involvement in relapsing pediatric acute lymphoblastic leukemia (ALL), our understanding of CNS invasion is still vague. As lymphoblasts have to overcome the physiological blood-CNS barriers to enter the CNS, we investigated the cellular interactions of lymphoblasts with the choroid plexus (CP) epithelium of the blood-cerebrospinal fluid barrier (BCSFB). Both a precurser B cell ALL (pB-ALL) cell line (SD-1) and a T cell ALL (T-ALL) cell line (P12-Ishikawa) were able to actively cross the CP epithelium in a human in vitro model. We could illustrate a transcellular and (supposedly) paracellular transmigration by 3-dimensional immunofluorescence microscopy as well as electron microscopy. Chemotactic stimulation with CXCL12 during this process led to a significantly increased transmigration and blocking CXCL12/CXCR4-signaling by the CXCR4-inhibitor AMD3100 inhibited this effect. However, CXCR4 expression in primary ALL samples did not correlate to CNS disease, indicating that CXCR4-driven CNS invasion across the BCSFB might be a general property of pediatric ALL. Notably, we present a unique in vitro BCSFB model suitable to study CNS invasion of lymphoblasts in a human setting, providing the opportunity to investigate experimental variables, which may determine CNS disease childhood ALL.


Assuntos
Plexo Corióideo , Linfócitos/metabolismo , Invasividade Neoplásica/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Migração Transendotelial e Transepitelial/fisiologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Quimiocina CXCL12/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Técnicas In Vitro , Linfócitos/patologia , Masculino , Modelos Biológicos , Receptores CXCR4/metabolismo , Células Tumorais Cultivadas
9.
Int J Mol Sci ; 17(8)2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27529215

RESUMO

The ST6GALNAC5 gene that encodes an α2,6-sialyltransferase involved in the biosynthesis of α-series gangliosides, was previously identified as one of the genes that mediate breast cancer metastasis to the brain. We have shown that the expression of ST6GALNAC5 in MDA-MB-231 breast cancer cells resulted in the expression of GD1α ganglioside at the cell surface. By using a human blood-brain barrier in vitro model recently developed, consisting in CD34⁺ derived endothelial cells co-cultivated with pericytes, we show that ST6GALNAC5 expression decreased the interactions between the breast cancer cells and the human blood-brain barrier.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias da Mama/metabolismo , Sialiltransferases/metabolismo , Animais , Antígenos CD34/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Gangliosídeo G(M1)/análogos & derivados , Gangliosídeo G(M1)/metabolismo , Humanos , Camundongos , Pericitos/metabolismo , Sialiltransferases/genética
10.
PLoS One ; 11(3): e0151155, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26958843

RESUMO

Around 7-17% of metastatic breast cancer patients will develop brain metastases, associated with a poor prognosis. To reach the brain parenchyma, cancer cells need to cross the highly restrictive endothelium of the Blood-Brain Barrier (BBB). As treatments for brain metastases are mostly inefficient, preventing cancer cells to reach the brain could provide a relevant and important strategy. For that purpose an in vitro approach is required to identify cellular and molecular interaction mechanisms between breast cancer cells and BBB endothelium, notably at the early steps of the interaction. However, while numerous studies are performed with in vitro models, the heterogeneity and the quality of BBB models used is a limitation to the extrapolation of the obtained results to in vivo context, showing that the choice of a model that fulfills the biological BBB characteristics is essential. Therefore, we compared pre-established and currently used in vitro models from different origins (bovine, mice, human) in order to define the most appropriate tool to study interactions between breast cancer cells and the BBB. On each model, the BBB properties and the adhesion capacities of breast cancer cell lines were evaluated. As endothelial cells represent the physical restriction site of the BBB, all the models consisted of endothelial cells from animal or human origins. Among these models, only the in vitro BBB model derived from human stem cells both displayed BBB properties and allowed measurement of meaningful different interaction capacities of the cancer cell lines. Importantly, the measured adhesion and transmigration were found to be in accordance with the cancer cell lines molecular subtypes. In addition, at a molecular level, the inhibition of ganglioside biosynthesis highlights the potential role of glycosylation in breast cancer cells adhesion capacities.


Assuntos
Barreira Hematoencefálica/citologia , Neoplasias da Mama/patologia , Animais , Antígenos CD34/metabolismo , Bovinos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Sangue Fetal/citologia , Humanos , Camundongos , Neuroglia/citologia , Neuroglia/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Ratos
11.
J Cereb Blood Flow Metab ; 36(5): 862-90, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26868179

RESUMO

The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture model of the blood-brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.


Assuntos
Barreira Hematoencefálica/citologia , Endotélio Vascular/citologia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Células Cultivadas , Células Endoteliais/citologia , Guias como Assunto , Humanos , Modelos Biológicos
12.
Lab Invest ; 96(5): 588-98, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26901835

RESUMO

Although brain metastases are the most common brain tumors in adults, there are few treatment options in this setting. To colonize the brain, circulating tumor cells must cross the blood-brain barrier (BBB), which is situated within specialized, restrictive microvascular endothelium. Understanding how cancer cells manage to transmigrate through the BBB might enable this process to be prevented. In vitro models are dedicated tools for characterizing the cellular and molecular mechanisms that underlie transendothelial migration process, as long as they accurately mimic the brain endothelium's in vivo characteristics. The objective of the present study was to adapt an existing in vitro model of the human BBB for use in studying cancer cell transmigration. The model is based on the coculture of endothelial cells (ECs, derived from cord blood hematopoietic stem cells) and brain pericytes. To allow the migration of cancer cells into the lower compartment, our model had to be transposed onto inserts with a larger pore size. However, we encountered a problem when culturing ECs on large (3-µm)-pore inserts: the cells crossed the membrane and formed a non-physiological second layer on the lower face of the insert. Using 3-µm-pore inserts (in a 12-well plate format), we report here on a method that enables the maintenance of a single monolayer of ECs on the insert's upper face only. Under these chosen conditions, the ECs exhibited typical BBB properties found in the original model (including restricted paracellular permeability and the expression of continuous tight junctions). This modified in vitro model of the human BBB enabled us to investigate the migratory potential of the MDA-MB-231 cell line (derived from highly metastatic human breast cancer cells). Last, the results obtained were compared with the rate of transmigration through endothelia with no BBB features.


Assuntos
Barreira Hematoencefálica/fisiologia , Células Neoplásicas Circulantes/patologia , Migração Transendotelial e Transepitelial/fisiologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Endotélio Vascular/fisiologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Biológicos , Pericitos/fisiologia , Porosidade
13.
Cancer Cell Int ; 15: 102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500454

RESUMO

BACKGROUND: The central nervous system (CNS) is protected by several barriers, including the blood-brain (BBB) and blood-cerebrospinal fluid (BCSFB) barriers. Understanding how cancer cells circumvent these protective barriers to invade the CNS is of crucial interest, since brain metastasis during cancer is often a fatal event in both children and adults. However, whereas much effort has been invested in elucidating the process of tumor cell transmigration across the BBB, the role of the BCSFB might still be underestimated considering the significant number of meningeal cancer involvement. Our work aimed to investigate the transmigration of neuroblastoma cells across the BCSFB in vitro. METHODS: We used an inverted model of the human BCSFB presenting proper restrictive features including adequate expression of tight-junction proteins, low permeability to integrity markers, and high trans-epithelial electrical resistance. Two different human neuroblastoma cell lines (SH-SY5Y and IMR-32) were used to study the transmigration process by fluorescent microscopy analysis. RESULTS: The results show that neuroblastoma cells are able to actively cross the tight human in vitro BCSFB model within 24 h. The presence and transmigration of neuroblastoma cancer cells did not affect the barrier integrity within the duration of the experiment. CONCLUSIONS: In conclusion, we presume that the choroid plexus might be an underestimated site of CNS invasion, since neuroblastoma cell lines are able to actively cross a choroid plexus epithelial cell layer. Further studies are warranted to elucidate the molecular mechanisms of tumor cell transmigration in vitro and in vivo.

14.
Fluids Barriers CNS ; 9(1): 11, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22569151

RESUMO

BACKGROUND: The function of pericytes remains questionable but with improved cultured technique and the use of genetically modified animals, it has become increasingly clear that pericytes are an integral part of blood-brain barrier (BBB) function, and the involvement of pericyte dysfunction in certain cerebrovascular diseases is now emerging. The porcine stress syndrome (PSS) is the only confirmed, homologous model of malignant hyperthermia (MH) in veterinary medicine. Affected animals can experience upon slaughter a range of symptoms, including skeletal muscle rigidity, metabolic acidosis, tachycardia and fever, similar to the human syndrome. Symptoms are due to an enhanced calcium release from intracellular stores. These conditions are associated with a point mutation in ryr1/hal gene, encoding the ryanodine receptor, a calcium channel. Important blood vessel wall muscle modifications have been described in PSS, but potential brain vessel changes have never been documented in this syndrome. METHODS: In the present work, histological and ultrastructural analyses of brain capillaries from wild type and ryr1 mutated pigs were conducted to investigate the potential impairment of pericytes, in this pathology. In addition, brain pericytes were isolated from the three porcine genotypes (wild-type NN pigs; Nn and nn pigs, bearing one or two (n) mutant ryr1/hal alleles, respectively), and tested in vitro for their influence on the permeability of BBB endothelial monolayers. RESULTS: Enlarged perivascular spaces were observed in ryr1-mutant samples, corresponding to a partial or total detachment of the astrocytic endfeet. These spaces were electron lucent and sometimes filled with lipid deposits and swollen astrocytic feet. At the ultrastructural level, brain pericytes did not seem to be affected because they showed regular morphology and characteristics, so we aimed to check their ability to maintain BBB properties in vitro. Our results indicated that pericytes from the three genotypes of pigs had differing influences on the BBB. Unlike pericytes from NN pigs, pericytes from Nn and nn pigs were not able to maintain low BBB permeability. CONCLUSIONS: Electron microscopy observations demonstrated brain capillary modifications in PSS condition, but no change in pericyte morphology. Results from in vitro experiments suggest that brain pericytes from ryr1 mutated pigs, even if they are not affected by this condition at the ultrastructural level, are not able to maintain BBB integrity in comparison with pericytes from wild-type animals.

15.
J Alzheimers Dis ; 30(3): 489-503, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22433669

RESUMO

In brain, excess cholesterol is metabolized into 24S-hydroxycholesterol (24S-OH-chol) and eliminated into the circulation across the blood-brain barrier. 24S-OH-chol is a natural agonist of the nuclear liver X receptors (LXRs) involved in peripheral cholesterol homeostasis. The effects of this oxysterol on the pericytes embedded in the basal lamina of this barrier (close to the brain compartment) have not been previously studied. We used primary cultures of brain pericytes to demonstrate that the latter express LXR nuclear receptors and their target gene ATP-binding cassette, sub-family A, member 1 (ABCA1), known to be one of the major transporters involved in peripheral lipid homeostasis. Treatment with 24S-OH-chol caused an increase in ABCA1 expression that correlated with a reverse cholesterol transfer to apolipoprotein E, apolipoprotein A-I, and high density lipoprotein particles. Inhibition of ABCA1 decreased this efflux. As pericytes are able to internalize the amyloid-ß peptides which accumulate in brain of Alzheimer's disease patients, we then investigated the effects of 24S-OH-chol on this process. We found that the cellular accumulation process was not modified by 24S-OH-chol treatment. Overall, our results highlight the importance of the LXR/ABCA1 system in brain pericytes and suggest a new role for these cells in brain cholesterol homeostasis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Pericitos/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Bovinos , Células Cultivadas , Hidroxicolesteróis/farmacologia , Receptores X do Fígado , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Pericitos/citologia , Pericitos/efeitos dos fármacos
16.
Drug Discov Today ; 17(7-8): 285-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22033197

RESUMO

Several parameters influencing the brain distribution of compounds must be considered when designing potential neuropharmaceuticals in early-stage drug discovery. The blood-brain barrier (BBB) represents an obstacle for drug penetration into the brain. Many in vitro BBB models have proven useful for predicting the BBB permeation rate, but do not meet all criteria for use in early-stage drug discovery: feasibility, rapidity, reliability and a low requirement for human resources. To meet this demand, we have developed a robust, higher-throughput, cell-based model exhibiting BBB features (low paracellular permeability, functional efflux pumps and the correct endothelial phenotype). This system comes in a ready-to-use, frozen format, appropriate for in-house use by large pharmaceutical firms and small biotech companies during early-stage drug discovery.


Assuntos
Barreira Hematoencefálica/metabolismo , Descoberta de Drogas , Modelos Biológicos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Animais , Transporte Biológico , Estudos de Casos e Controles , Humanos , Farmacocinética
17.
Curr Neurovasc Res ; 8(4): 258-69, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22023614

RESUMO

The blood-brain barrier (BBB) is a dynamic cellular complex that is responsible for the maintenance of brain homeostasis. To understand the BBB's key cellular and molecular mechanisms, in vitro models combining endothelial cells and astrocytes can be used to reproduce most of the barrier's in vivo features (low paracellular permeability and the expression of specific transporters). However, these models lack pericytes - a poorly characterized cell type which appears to be of crucial importance to understand BBB's function in healthy and diseased states. The present study sought to identify and characterize this cell population - which lacks a specific marker - by comparing its phenotype with that of vascular smooth muscle cells. Even if pericytes and smooth muscle cells shared many markers in vitro, our results showed that they could be distinguished by their different P-glycoprotein expression and γ-glutamyltranspeptidase activity. Two different three-cell-type culture models were described, including pericytes to mimic the neurovascular unit. In the first model, endothelial cells were cultured alone on a filter, away from glial cells and pericytes, allowing endothelial cell phenotype characterization. In the second model, glial cells were at the bottom of the well while pericytes and endothelial cells were cultured together in the filter: close interactions were observed in peg-and-socket contacts. In both models low paracellular permeability and P-glycoprotein functionality were demonstrated. These models are likely to be useful tools for understanding the pericytes' role in BBB physiology and could be of value in investigating the pericytes' influence on BBB in diseased states.


Assuntos
Barreira Hematoencefálica/fisiologia , Células Endoteliais/fisiologia , Neuroglia/fisiologia , Pericitos/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Antígenos/metabolismo , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/ultraestrutura , Encéfalo/citologia , Bovinos , Células Cultivadas , Claudina-5 , Claudinas/metabolismo , Técnicas de Cocultura/métodos , Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Músculo Liso Vascular/citologia , Ocludina , Fosfoproteínas/metabolismo , Proteoglicanas/metabolismo , Ratos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Rodamina 123/metabolismo , Verapamil/metabolismo , Vimentina/metabolismo , Proteína da Zônula de Oclusão-1 , gama-Glutamiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...