Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670506

RESUMO

Much of the toxicity in oil sands process-affected water in Athabasca oil sands tailings has been attributed to naphthenic acids (NAs) and associated naphthenic acid fraction compounds (NAFCs). Previous work has characterized the environmental behaviour and fate of these compounds, particularly in the context of constructed treatment wetlands. There is evidence that wetlands can attenuate NAFCs in natural and engineered contexts, but relative contributions of chemical, biotic, and physical adsorption with sequestration require deconvolution. In this work, the objective was to evaluate the extent to which prospective wetland substrate material may adsorb NAFCs using a peat-mineral mix (PMM) sourced from the Athabasca Oil Sands Region (AOSR). The PMM and NAFCs were first mixed and then equilibrated across a range of NAFC concentrations (5-500 mg/L) with moderate ionic strength and hardness (∼200 ppm combined Ca2+ and Mg2+) that approximate wetland water chemistry. Under these experimental conditions, low sorption of NAFCs to PMM was observed, where sorbed concentrations of NAFCs were approximately zero mg/kg at equilibrium. When NAFCs and PMM were mixed and equilibrated together at environmentally relevant concentrations, formula diversity increased more than could be explained by combining constituent spectra. The TOC present in this PMM was largely cellulose-derived, with low levels of thermally recalcitrant carbon (e.g., lignin, black carbon). The apparent enhancement of the concentration and diversity of components in PMM/NAFCs mixtures are likely related to aqueous solubility of some PMM-derived organic materials, as post-hoc combination of dissolved components from PMM and NAFCs cannot replicate enhanced complexity observed when the two components are agitated and equilibrated together.


Assuntos
Ácidos Carboxílicos , Campos de Petróleo e Gás , Solo , Áreas Alagadas , Adsorção , Ácidos Carboxílicos/química , Solo/química , Minerais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Areia/química
2.
Environ Monit Assess ; 195(10): 1228, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725196

RESUMO

Surface oil sands mining and extraction in northern Alberta's Athabasca oil sands region produce large volumes of oil sands process-affected water (OSPW). OSPW is a complex mixture containing major contaminant classes including trace metals, polycyclic aromatic hydrocarbons, and naphthenic acid fraction compounds (NAFCs). Naphthenic acids (NAs) are the primary organic toxicants in OSPW, and reducing their concentrations is a priority for oil sands companies. Previous evidence has shown that constructed wetland treatment systems (CWTSs) are capable of reducing the concentration of NAs and the toxicity of OSPW through bioremediation. In this study, we constructed greenhouse mesocosms with OSPW or lab process water (LPW) (i.e., water designed to mimic OSPW minus the NAFC content) with three treatments: (1) OSPW planted with Carex aquatilis; (2) OSPW, no plants; and (3) LPW, no plants. The OSPW-C. aquatilis treatment saw a significant reduction in NAFC concentrations in comparison to OSPW, no plant treatments, but both changed the distribution of the NAFCs in similar ways. Upon completion of the study, treatments with OSPW saw fewer high-molecular-weight NAs and an increase in the abundance of O3- and O4-containing formulae. Results from this study provide invaluable information on how constructed wetlands can be used in future remediation of OSPW in a way that previous studies were unable to achieve due to uncontrollable environmental factors in field experiments and the active, high-energy processes used in CWTSs pilot studies.


Assuntos
Carex (Planta) , Oligoelementos , Áreas Alagadas , Campos de Petróleo e Gás , Monitoramento Ambiental , Água
3.
Environ Pollut ; 333: 122061, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330190

RESUMO

The Athabasca oil sands region (AOSR) of Alberta, Canada is notable for its considerable unconventional petroleum extraction projects, where bitumen is extracted from naturally-occurring oil sands ore. The large scale of these heavy crude oil developments raises concerns because of their potential to distribute and/or otherwise influence the occurrence, behaviour, and fate of environmental contaminants. Naphthenic acids (NAs) are one such contaminant class of concern in the AOSR, so studies have examined the occurrence and molecular profiles of NAs in the region. We catalogued the spatiotemporal occurrence and characteristics of NAs in boreal wetlands in the AOSR over a 7-year period, using derivatized liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparing median concentrations of NAs across these wetlands revealed a pattern of NAs suggesting NAs in surface waters derived from oil sands deposits. Opportunistic wetlands that formed adjacent to reclaimed overburden and other reclamation activities had the highest concentrations of NAs and consistent patterns suggestive of bitumen-derived inputs. However, similar patterns in the occurrence of NAs were also observed in undeveloped natural wetlands located above the known surface-mineable oil sands deposit that underlies the region. Intra-annual sampling results along with inter-annual comparisons across wetlands demonstrated that differences in the spatial and temporal NA concentrations were dependent on local factors, particularly when naturally occurring oil sands ores were observed in the wetland or drainage catchment.


Assuntos
Petróleo , Poluentes Químicos da Água , Alberta , Campos de Petróleo e Gás , Áreas Alagadas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Petróleo/análise , Ácidos Carboxílicos/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 806(Pt 2): 150619, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592289

RESUMO

Bitumen is extracted from oil sands in the Athabasca Oil Sands region (AOSR) of Alberta, Canada. Much of the bitumen-derived toxicity in mine waste is attributable to naphthenic acid fraction compounds (NAFCs). Mines in the AOSR are required to be returned to a natural state after closure; thus, cost-effective strategies are needed to reduce toxicity from NAFCs. Previous studies have demonstrated the capability of constructed wetlands to attenuate NAFCs. However, the capacity of wetlands in the natural environment to degrade and transform NAFCs to less toxic components is poorly understood. To better understand the spatial distribution and fate of NAFCs in natural wetlands, samples were collected across the surfaces of two mature opportunistic wetlands near active oil sands mines. The first wetland has a well-defined surface flow pathway and inflows affected by overburden containing lean bitumen ore. The second wetland, in contrast, is a stagnant water body with raw bitumen visible along its edges. For the wetland with a well defined flow path, NAFCs decreased in concentration down gradient, while oxidized NAFCs constituted a greater proportion of NAFCs with increase in flow path. Likewise there was a decrease in the molecular weights of NAFCs, similar to trends observed in constructed wetland treatment systems. In comparison, NAFCs were more uniformly distributed across the relatively stagnant wetland. Overall, these data provide new evidence that mature opportunistic wetlands in the AOSR can promote the degradation and oxidation of bitumen-derived naphthenic acids into less toxic compounds.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Alberta , Ácidos Carboxílicos , Hidrocarbonetos , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 780: 146342, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770601

RESUMO

Classical naphthenic acids (NAs) are known to be primary aquatic toxicants of concern in the Athabasca oil sands region (AOSR), and are a component of naphthenic acid fraction compounds (NAFCs). Recent studies conducted in the AOSR have examined metals and polycyclic aromatic hydrocarbons in regional wetlands. However, few studies have described NAs and/or NAFCs in AOSR wetlands. To address this gap, we examined NAFC profiles in the water of different wetlands in the AOSR, including naturalized borrow pits (i.e., abandoned pits created by excavation of road-building materials), and opportunistically-formed wetlands associated with reclamation activities. For comparison, NAFC profiles from these wetlands were compared to an opportunistic wetland formed from tailings pond dyke seepage. Samples were prepared using solid-phase extraction and analyzed using negative-ion high-resolution Orbitrap mass spectrometry. Principal component analyses (PCA) revealed patterns to the NAFC profiles in the wetlands. The first distinct grouping of wetlands included water bodies associated with reclamation activities that are located on and/or adjacent to mining overburden. One other wetland, HATS5w, separated from all other wetlands during PCA, and had a unique NAFC profile; detailed examination of NAFCs revealed HATS5w contained the heaviest (i.e., high m/z components) and most unsaturated NAFCs among study locations, demonstrating the usefulness of high-resolution mass spectrometry for characterizing individual wetlands. The NAFCs of HATS5w are also substantially different from bitumen-derived inputs in overburden-adjacent opportunistic wetlands. Collectively, the NAFC profiles presented provide new information on background levels of polar bitumen-derived organics in AOSR wetlands.

6.
Chemosphere ; 272: 129892, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33601202

RESUMO

Naphthenic acid fraction compounds (NAFCs) are a toxicologically relevant component of oil sands process-affected materials (OSPM). For the first time, we report on differences in the concentrations and distribution of NAFCs from wetlands on an Athabasca oil sands mine site with varied histories of solid and liquid OSPM input. Sampling locations included natural and naturalized reference wetlands, a reclaimed tailings pond, wetlands supplemented with OSPM, opportunistic wetlands, and tailings ponds. Samples were prepared using solid-phase extraction, and analyzed by high-resolution Orbitrap mass spectrometry; NAFC concentrations and characteristics were evaluated for all locations. The NAFCs from tailings ponds were dominated by O3-NAFCs and classical naphthenic acids (NAs; i.e., O2 species) with double bond equivalences of 3 and 4. Reference wetlands had no dominant species, and relatively little NAFC content. The heteroatomic species in opportunistic wetlands were dominated by highly-oxidized NAFC species, where Σ [O3:O6] species constituted 55-75% of the assignable spectrum and 3-4% NAs; in tailings ponds NAs constituted 47-51%. A relatively young (4-year-old) wetland built on a former tailings pond had NAFC concentrations between 65 and 80 mg/L, and NAs constituted 47% of the assignable spectrum. There was thus little apparent oxidation of NAFCs at this young wetland. The composition of NAFCs from one wetland (≥15 years old) supplemented with OSPM contained a greater proportion of oxidized species than tailings, suggesting NAFC transformation therein. These data suggest that while NAFCs are persistent in some wetlands, there is preliminary evidence for oxidation in mature wetlands.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Ácidos Carboxílicos , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
7.
J Environ Sci (China) ; 87: 341-348, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791507

RESUMO

Ionic liquids (ILs) are a class of solvents increasingly used as "green chemicals." Widespread applications of ILs have led to concerns about their accidental entry to the environment. ILs have been assessed for some environmental impacts; however, little has been done to characterize their potential impacts on drinking water if ILs accidentally enter surface water. IL cations are often aromatic or alkyl quaternary amines that resemble structures of previously confirmed N-nitrosamine (NA) precursors. Therefore, this study has evaluated two common ILs, 1-ethyl-3-methylimidazolium bromide (EMImBr) and 1-ethyl-1-methylpyrrolidinium bromide (EMPyrBr), for their NA formation potential. Each IL species was reacted with pre-formed monochloramine under various laboratory conditions. The reaction mixtures were extracted using liquid-liquid extraction and analyzed for NAs using high performance liquid chromatography tandem mass spectrometry. At low concentration of IL (250 µmol/L), the yields of NAs (NMEA or NPyr) increased with increasing doses of monochloramine from both IL species. The total NA yield was as high as 2.5 ±â€¯0.3 ng/mg from EMImBr, and as high as 8.6 ±â€¯0.8 ng/mg from EMPyrBr. At high concentration of IL (5 mmol/L), the NA yield reached a maximum at 2.5 mmol/L NH2Cl, and then decreased with subsequent increases in the reactant concentrations, demonstrating ILs' solvent effects. This study re-emphasizes the importance of preventing discharge of ILs to water bodies to prevent secondary impacts on drinking water.


Assuntos
Líquidos Iônicos/química , Poluentes Químicos da Água/química , Imidazóis , Modelos Químicos , Nitrosaminas , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...