Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 11(4): 541-549, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292562

RESUMO

A class of imidazoisoindole (III) heme-binding indoleamine-2,3-dioxygenase (IDO1) inhibitors were optimized via structure-based drug design into a series of tryptophan-2,3-dioxygenase (TDO)-selective inhibitors. Kynurenine pathway modulation was demonstrated in vivo, which enabled evaluation of TDO as a potential cancer immunotherapy target. As means of mitigating the risk of drug-drug interactions arising from cytochrome P450 inhibition, a novel property-based drug design parameter, herein referred to as the CYP Index, was implemented for the design of inhibitors with appreciable selectivity for TDO over CYP3A4. We anticipate the CYP Index will be a valuable design parameter for optimizing CYP inhibition of any small molecule inhibitor containing a Lewis basic motif capable of binding heme.

2.
Anal Chem ; 91(1): 903-911, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30481450

RESUMO

High throughput protein-ligand interaction screening assays employing mass spectrometric detection are widely used in early stage drug discovery. Mass spectrometry-based screening approaches employ a target protein added to a pool of small-molecule compounds, and binding is assessed by measuring ligands denatured from the complexes. Direct analysis of protein-ligand interactions using native mass spectrometry has been demonstrated but is not widely used due to the detection limit on protein size, the requirement of volatile buffers, and the necessity for specialized instrumentation to preserve weak interactions under native conditions. Here we present a robust, quantitative, and automated online size-exclusion chromatography-native mass spectrometry (SEC-nMS) platform for measuring affinities of noncovalent protein-small-molecule interactions on an Orbitrap mass spectrometer. Indoleamine 2,3-dioxygenase 1, a catabolic enzyme, and inhibitory ligands were employed as a demonstration of the method. Efficient separation and elution enabled preservation of protein-ligand complexes and increased throughput. The high sensitivity and intra charge state resolution at high m/ z offered by the Exactive Plus EMR Orbitrap allowed for protein ligand affinity quantitation and resolved individual compounds close in mass. Vc50 values determined via collision-induced dissociation experiments enabled the evaluation of complex stability in the gas phase and were found to be independent of the extent of complex formation. For the first time, Vc50 determinations were achieved on an inline SEC-nMS platform. Systematic comparison of our method with optimized chip-based nanoelectrospray infusion served as a reference for ligand screening and affinity quantitation and further revealed the advantages of SEC-MS.


Assuntos
Acetatos/análise , Inibidores Enzimáticos/análise , Ensaios de Triagem em Larga Escala , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Bibliotecas de Moléculas Pequenas/análise , Acetatos/farmacologia , Cromatografia em Gel , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Ligantes , Espectrometria de Massas , Bibliotecas de Moléculas Pequenas/farmacologia
3.
ACS Med Chem Lett ; 9(5): 417-421, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29795752

RESUMO

Tryptophan 2,3-dioxygenase 2 (TDO2) catalyzes the conversion of tryptophan to the immunosuppressive metabolite kynurenine. TDO2 overexpression has been observed in a number of cancers; therefore, TDO inhibition may be a useful therapeutic intervention for cancers. We identified an aminoisoxazole series as potent TDO2 inhibitors from a high-throughput screen (HTS). An extensive medicinal chemistry effort revealed that both the amino group and the isoxazole moiety are important for TDO2 inhibitory activity. Computational modeling yielded a binding hypothesis and provided insight into the observed structure-activity relationships. The optimized compound 21 is a potent TDO2 inhibitor with modest selectivity over indolamine 2,3-dioxygenase 1 (IDO1) and with improved human whole blood stability.

4.
SLAS Discov ; 22(10): 1211-1217, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28581894

RESUMO

In recent years, the ability to unambiguously identify complex mixtures of analytes with high accuracy and resolving power in a label-free format continues to expand the application of mass spectrometry (MS) in the drug discovery process. This advantage combined with improved instrumentation makes MS suitable for targets with limited alternative assays for high-throughput screening (HTS). We describe a novel screening format using Self-Assembled Monolayers and matrix-assisted laser Desorption Ionization (SAMDI) technology. SAMDI enables affinity capture of a target protein for use in a small-molecule-binding assay format. Subsequent ionization enables the inferred identification of noncovalent compound interactions. SAMDI technology overcomes shot-to-shot variability by uniformly saturating the surface with captured protein, thereby minimizing matrix crystallization "hot spots." Furthermore, the combination with high-resolution matrix-assisted laser desorption/ionization time of flight significantly reduces interference of small-molecule detection from salt, detergent, and matrix. By using a pooled library format, the SAMDI assay can significantly improve the throughput of MS-based screening irrespective of enzyme activity. Finally, we demonstrate binding affinity rank ordering from a pool of compounds that correlates with potency data from a biochemical assay.


Assuntos
Bibliotecas de Moléculas Pequenas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bioensaio , Bovinos , Estudos de Viabilidade , Soluções
5.
Bioorg Med Chem Lett ; 26(18): 4492-4496, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27499454

RESUMO

Features from a high throughput screening (HTS) hit and a previously reported scaffold were combined to generate 1,7-naphthyridones as novel KDM5 enzyme inhibitors with nanomolar potencies. These molecules exhibited high selectivity over the related KDM4C and KDM2B isoforms. An X-ray co-crystal structure of a representative molecule bound to KDM5A showed that these inhibitors are competitive with the co-substrate (2-oxoglutarate or 2-OG).


Assuntos
Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Naftiridinas/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Cristalografia por Raios X , Cães , Desenho de Fármacos , Humanos , Células Madin Darby de Rim Canino , Naftiridinas/química , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 26(17): 4350-4, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476424

RESUMO

This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Camundongos , Microssomos Hepáticos/enzimologia , Modelos Moleculares , Ratos
7.
Bioorg Med Chem Lett ; 25(1): 75-82, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25466195

RESUMO

Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enone using structure-based design strategies resulted in inhibitors with considerable improvement in biochemical potency against human lactate dehydrogenase A (LDHA). These potent inhibitors were typically selective for LDHA over LDHB isoform (4­10 fold) and other structurally related malate dehydrogenases, MDH1 and MDH2 (>500 fold). An X-ray crystal structure of enzymatically most potent molecule bound to LDHA revealed two additional interactions associated with enhanced biochemical potency.


Assuntos
Inibidores Enzimáticos/síntese química , L-Lactato Desidrogenase/antagonistas & inibidores , Animais , Cristalografia por Raios X , Cães , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , L-Lactato Desidrogenase/metabolismo , Células Madin Darby de Rim Canino
8.
Bioorg Med Chem Lett ; 24(16): 3764-71, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25037916

RESUMO

A novel class of 3-hydroxy-2-mercaptocyclohex-2-enone-containing inhibitors of human lactate dehydrogenase (LDH) was identified through a high-throughput screening approach. Biochemical and surface plasmon resonance experiments performed with a screening hit (LDHA IC50=1.7 µM) indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of this screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.18 µM). Two crystal structures of optimized compounds bound to human LDHA were obtained and explained many of the observed structure-activity relationships. In addition, an optimized inhibitor exhibited good pharmacokinetic properties after oral administration to rats (F=45%).


Assuntos
Cicloexanonas/farmacologia , Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Compostos de Sulfidrila/farmacologia , Administração Oral , Animais , Cicloexanonas/administração & dosagem , Cicloexanonas/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , L-Lactato Desidrogenase/metabolismo , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Compostos de Sulfidrila/administração & dosagem , Compostos de Sulfidrila/química
9.
Bioorg Med Chem Lett ; 23(20): 5533-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24012183

RESUMO

A 2-amino-5-aryl-pyrazine was identified as an inhibitor of human lactate dehydrogenase A (LDHA) via a biochemical screening campaign. Biochemical and biophysical experiments demonstrated that the compound specifically interacted with human LDHA. Structural variation of the screening hit resulted in improvements in LDHA biochemical inhibition and pharmacokinetic properties. A crystal structure of an improved compound bound to human LDHA was also obtained and it explained many of the observed structure-activity relationships.


Assuntos
Inibidores Enzimáticos/química , L-Lactato Desidrogenase/antagonistas & inibidores , Pirazinas/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Estrutura Terciária de Proteína , Pirazinas/síntese química , Pirazinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
10.
Anal Biochem ; 441(2): 115-22, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23871998

RESUMO

Catalytic turnover of pyruvate to lactate by lactate dehydrogenase (LDH) is critical in maintaining an intracellular nicotinamide adenine dinucleotide (NAD⁺) pool for continuous fueling of the glycolytic pathway. In this article, we describe two label-free high-throughput assays (a kinetic assay detecting the intrinsic reduced nicotinamide adenine dinucleotide (NADH) fluorescence and a mass spectrometric assay monitoring the conversion of pyruvate to lactate) that were designed to effectively identify LDH inhibitors, characterize their different mechanisms of action, and minimize potential false positives from a small molecule compound library screen. Using a fluorescence kinetic image-based reader capable of detecting NADH fluorescence in the ultra-high-throughput screening (uHTS) work flow, the enzyme activity was measured as the rate of NADH conversion to NAD⁺. Interference with NADH fluorescence by library compounds was readily identified during the primary screen. The mass spectrometric assay quantitated the lactate and pyruvate levels simultaneously. The multiple reaction monitoring mass spectrometric method accurately detected each of the two small organic acid molecules in the reaction mixture. With robust Z' scores of more than 0.7, these two high-throughput assays for LDH are both label free and complementary to each other in the HTS workflow by monitoring the activities of the compounds on each half of the LDH redox reaction.


Assuntos
Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , NAD/metabolismo , Ácido Pirúvico/metabolismo , Ensaios Enzimáticos , Ensaios de Triagem em Larga Escala , Humanos , Ácido Láctico/análise , Espectrometria de Massas , NAD/análise , Neoplasias/enzimologia , Ácido Pirúvico/análise , Espectrometria de Fluorescência
11.
Bioorg Med Chem Lett ; 23(11): 3186-94, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23628333

RESUMO

A novel 2-thio-6-oxo-1,6-dihydropyrimidine-containing inhibitor of human lactate dehydrogenase (LDH) was identified by high-throughput screening (IC50=8.1 µM). Biochemical, surface plasmon resonance, and saturation transfer difference NMR experiments indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of the screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.48 µM). A crystal structure of an optimized compound bound to human LDHA was obtained and explained many of the observed structure-activity relationships.


Assuntos
Inibidores Enzimáticos/química , L-Lactato Desidrogenase/antagonistas & inibidores , Pirimidinas/química , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Ligação de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Espectroscopia de Ressonância Magnética , NAD/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Pirimidinas/síntese química , Pirimidinas/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
12.
Biochemistry ; 49(14): 3092-100, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20205471

RESUMO

Various mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to susceptibility for both familial and idiopathic late-onset Parkinson's disease (PD). In this study, we have demonstrated that phosphorylation of MBP and LRRKtide by the LRRK2 G2019S mutant was activated by Mn(2+) in vitro. This enhanced G2019S kinase activity was due to the combination of an increase in kinase and a decrease in ATPase activity by Mn(2+). Compared to 10 mM Mg(2+), 1 mM Mn(2+) reduced ATP K(m) for G2019S from 103 to 1.8 muM and only modestly reduced k(cat) (2.5-fold); as a result, the Mn(2+) increased its k(cat)/K(m) by 22-fold. This change in ATP K(m) was due in large part to an increase in nucleotide affinity. While Mn(2+) also increased ATP affinity and had similar effects on k(cat)/K(m) for LRRK2 WT and R1441C enzymes, it reduced their k(cat) values significantly by 13-17-fold. Consequently, the difference in the kinase activity between G2019S and other LRRK2 variants was enhanced from about 2-fold in Mg(2+) to 10-fold in Mn(2+) at saturating ATP concentrations relative to its K(m). Furthermore, while Mg(2+) yielded optimal V(max) values at Mg(2+) concentration greater than 5 mM, the optimal Mn(2+) concentration for activating LRRK2 catalysis was in the micromolar range with increasing Mn(2+) above 1 mM causing a decrease in enzyme activity. Finally, despite the large but expected differences in IC(50) tested at 100 muM ATP, the apparent K(i) values of a small set of LRRK2 ATP-competitive inhibitors were within 5-fold between Mg(2+)- and Mn(2+)-mediated reactions except AMP-CPP, an ATP analogue.


Assuntos
Magnésio/química , Manganês/química , Proteínas Serina-Treonina Quinases/química , Difosfato de Adenosina/química , Adenosina Trifosfatases/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Ligação Competitiva , Catálise , Domínio Catalítico , Cátions Bivalentes , Mutação , Proteína Básica da Mielina/química , Oligopeptídeos/química , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética
13.
Mol Cancer Ther ; 8(4): 930-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19372566

RESUMO

Aurora kinases play key roles in regulating centrosome maturation, mitotic spindle formation, and cytokinesis during cell division, and are considered promising drug targets due to their frequent overexpression in a variety of human cancers. SNS-314 is a selective and potent pan Aurora inhibitor currently in a dose escalation phase 1 clinical trial for the treatment of patients with advanced solid tumors. Here, we report the antiproliferative effects of SNS-314 in combination with common chemotherapeutics in cell culture and xenograft models. The HCT116 colorectal carcinoma cell line, with intact or depleted p53 protein levels, was treated with SNS-314 and a cytotoxic chemotherapeutic from a panel comprised of gemcitabine, 5-fluorouracil (5-FU), carboplatin, daunomycin, SN-38 (the active metabolite of irinotecan), docetaxel, and vincristine. Combinations were administered under either concurrent or sequential schedules. SNS-314 has predominantly additive effects when administered concurrently with commonly used anticancer agents. Sequential administration of SNS-314 with chemotherapeutic compounds showed additive antiproliferative effects with carboplatin, gemcitabine, 5-FU, daunomycin, and SN-38, and synergy was observed in combination with gemcitabine, docetaxel, or vincristine. The most profound antiproliferative effects were observed with sequential administration of SNS-314 followed by docetaxel or vincristine. In vivo, SNS-314 potentiated the antitumor activity of docetaxel in xenografts. Both the in vitro synergies observed between SNS-314 and agents that target the mitotic spindle and the potentiation seen with docetaxel in vivo are consistent with a mechanism of action in which Aurora inhibition bypasses the mitotic spindle assembly checkpoint and prevents cytokinesis, augmenting subsequent spindle toxin-mediated mitotic catastrophe and cell death.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Microtúbulos/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Aurora Quinases , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Fuso Acromático/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Bioorg Med Chem Lett ; 18(20): 5648-52, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18793847

RESUMO

A series of 2-amino-pyrazolopyridines was designed and synthesized as Polo-like kinase (Plk) inhibitors based on a low micromolar hit. The SAR was developed to provide compounds exhibiting low nanomolar inhibitory activity of Plk1; the phenotype of treated cells is consistent with Plk1 inhibition. A co-crystal structure of one of these compounds with zPlk1 confirms an ATP-competitive binding mode.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Química Farmacêutica/métodos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazóis/síntese química , Piridinas/síntese química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Ciclo Celular , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Modelos Químicos , Conformação Molecular , Fenótipo , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Relação Estrutura-Atividade , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...