Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6497, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764269

RESUMO

Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), an antifungal compound.


Assuntos
Aprendizado de Máquina , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Cinetocoros/metabolismo , Biologia de Sistemas/métodos
2.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958448

RESUMO

Phenotypes associated with genetic variants can be altered by interactions with other genetic variants (GxG), with the environment (GxE), or both (GxGxE). Yeast genetic interactions have been mapped on a global scale, but the environmental influence on the plasticity of genetic networks has not been examined systematically. To assess environmental rewiring of genetic networks, we examined 14 diverse conditions and scored 30,000 functionally representative yeast gene pairs for dynamic, differential interactions. Different conditions revealed novel differential interactions, which often uncovered functional connections between distantly related gene pairs. However, the majority of observed genetic interactions remained unchanged in different conditions, suggesting that the global yeast genetic interaction network is robust to environmental perturbation and captures the fundamental functional architecture of a eukaryotic cell.


Assuntos
Redes Reguladoras de Genes , Interação Gene-Ambiente , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Aptidão Genética , Mutação
3.
Nat Protoc ; 16(2): 1219-1250, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462440

RESUMO

Systematic complex genetic interaction studies have provided insight into high-order functional redundancies and genetic network wiring of the cell. Here, we describe a method for screening and quantifying trigenic interactions from ordered arrays of yeast strains grown on agar plates as individual colonies. The protocol instructs users on the trigenic synthetic genetic array analysis technique, τ-SGA, for high-throughput screens. The steps describe construction of the double-mutant query strains and the corresponding single-mutant control query strains, which are screened in parallel in two replicates. The screening experimental set-up consists of sequential replica-pinning steps that enable automated mating, meiotic recombination and successive haploid selection steps for the generation of triple mutants, which are scored for colony size as a proxy for fitness, which enables the calculation of trigenic interactions. The procedure described here was used to conduct 422 trigenic interaction screens, which generated ~460,000 yeast triple mutants for trigenic interaction analysis. Users should be familiar with robotic equipment required for high-throughput genetic interaction screens and be proficient at the command line to execute the scoring pipeline. Large-scale screen computational analysis is achieved by using MATLAB pipelines that score raw colony size data to produce τ-SGA interaction scores. Additional recommendations are included for optimizing experimental design and analysis of smaller-scale trigenic interaction screens by using a web-based analysis system, SGAtools. This protocol provides a resource for those who would like to gain a deeper, more practical understanding of trigenic interaction screening and quantification methodology.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leveduras/genética , Alelos , Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Técnicas Genéticas , Testes Genéticos/métodos , Haploidia , Meiose/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética
4.
Cell Syst ; 11(3): 215-228.e5, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32916097

RESUMO

Precise discrimination of tumor from normal tissues remains a major roadblock for therapeutic efficacy of chimeric antigen receptor (CAR) T cells. Here, we perform a comprehensive in silico screen to identify multi-antigen signatures that improve tumor discrimination by CAR T cells engineered to integrate multiple antigen inputs via Boolean logic, e.g., AND and NOT. We screen >2.5 million dual antigens and ∼60 million triple antigens across 33 tumor types and 34 normal tissues. We find that dual antigens significantly outperform the best single clinically investigated CAR targets and confirm key predictions experimentally. Further, we identify antigen triplets that are predicted to show close to ideal tumor-versus-normal tissue discrimination for several tumor types. This work demonstrates the potential of 2- to 3-antigen Boolean logic gates for improving tumor discrimination by CAR T cell therapies. Our predictions are available on an interactive web server resource (antigen.princeton.edu).


Assuntos
Antígenos de Neoplasias/metabolismo , Imunoterapia Adotiva/métodos , Humanos
5.
Science ; 368(6498)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32586993

RESUMO

Whole-genome duplication has played a central role in the genome evolution of many organisms, including the human genome. Most duplicated genes are eliminated, and factors that influence the retention of persisting duplicates remain poorly understood. We describe a systematic complex genetic interaction analysis with yeast paralogs derived from the whole-genome duplication event. Mapping of digenic interactions for a deletion mutant of each paralog, and of trigenic interactions for the double mutant, provides insight into their roles and a quantitative measure of their functional redundancy. Trigenic interaction analysis distinguishes two classes of paralogs: a more functionally divergent subset and another that retained more functional overlap. Gene feature analysis and modeling suggest that evolutionary trajectories of duplicated genes are dictated by combined functional and structural entanglement factors.


Assuntos
Duplicação Gênica , Genes Duplicados , Genoma Fúngico , Mapas de Interação de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Deleção de Genes , Redes Reguladoras de Genes , Técnicas Genéticas , Proteínas de Membrana/genética , Peroxinas/genética
6.
Nat Commun ; 10(1): 4274, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537791

RESUMO

Genetic interactions have been reported to underlie phenotypes in a variety of systems, but the extent to which they contribute to complex disease in humans remains unclear. In principle, genome-wide association studies (GWAS) provide a platform for detecting genetic interactions, but existing methods for identifying them from GWAS data tend to focus on testing individual locus pairs, which undermines statistical power. Importantly, a global genetic network mapped for a model eukaryotic organism revealed that genetic interactions often connect genes between compensatory functional modules in a highly coherent manner. Taking advantage of this expected structure, we developed a computational approach called BridGE that identifies pathways connected by genetic interactions from GWAS data. Applying BridGE broadly, we discover significant interactions in Parkinson's disease, schizophrenia, hypertension, prostate cancer, breast cancer, and type 2 diabetes. Our novel approach provides a general framework for mapping complex genetic networks underlying human disease from genome-wide genotype data.


Assuntos
Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Modelos Genéticos , Neoplasias da Mama/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Hipertensão/genética , Masculino , Transtornos Parkinsonianos/genética , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Próstata/genética , Esquizofrenia/genética
7.
Curr Opin Microbiol ; 45: 170-179, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059827

RESUMO

Systematic experimental approaches have led to construction of comprehensive genetic and protein-protein interaction networks for the budding yeast, Saccharomyces cerevisiae. Genetic interactions capture functional relationships between genes using phenotypic readouts, while protein-protein interactions identify physical connections between gene products. These complementary, and largely non-overlapping, networks provide a global view of the functional architecture of a cell, revealing general organizing principles, many of which appear to be evolutionarily conserved. Here, we focus on insights derived from the integration of large-scale genetic and protein-protein interaction networks, highlighting principles that apply to both unicellular and more complex systems, including human cells. Network integration reveals fundamental connections involving key functional modules of eukaryotic cells, defining a core network of cellular function, which could be elaborated to explore cell-type specificity in metazoans.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Epistasia Genética , Ligação Proteica , Mapas de Interação de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
Science ; 360(6386)2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29674565

RESUMO

To systematically explore complex genetic interactions, we constructed ~200,000 yeast triple mutants and scored negative trigenic interactions. We selected double-mutant query genes across a broad spectrum of biological processes, spanning a range of quantitative features of the global digenic interaction network and tested for a genetic interaction with a third mutation. Trigenic interactions often occurred among functionally related genes, and essential genes were hubs on the trigenic network. Despite their functional enrichment, trigenic interactions tended to link genes in distant bioprocesses and displayed a weaker magnitude than digenic interactions. We estimate that the global trigenic interaction network is ~100 times as large as the global digenic network, highlighting the potential for complex genetic interactions to affect the biology of inheritance, including the genotype-to-phenotype relationship.


Assuntos
Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos
9.
G3 (Bethesda) ; 7(5): 1539-1549, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28325812

RESUMO

Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner.


Assuntos
Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Software , Ligação Proteica , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Science ; 354(6312)2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811238

RESUMO

Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we examined both literature-curated and unbiased experimental data, involving systematic genetic mapping and whole-genome sequencing, to generate a large-scale suppression network among yeast genes. Most suppression pairs identified novel relationships among functionally related genes, providing new insights into the functional wiring diagram of the cell. In addition to suppressor mutations, we identified frequent secondary mutations,in a subset of genes, that likely cause a delay in the onset of stationary phase, which appears to promote their enrichment within a propagating population. These findings allow us to formulate and quantify general mechanisms of genetic suppression.


Assuntos
Redes Reguladoras de Genes , Genes Fúngicos , Genes Supressores , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Supressão Genética , Fenômenos Fisiológicos Celulares/genética , Mapeamento Cromossômico
11.
Science ; 353(6306)2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27708008

RESUMO

We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.


Assuntos
Redes Reguladoras de Genes , Genes Fúngicos/fisiologia , Pleiotropia Genética/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Epistasia Genética , Genes Essenciais
12.
Cell ; 159(5): 1168-1187, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416953

RESUMO

The fungal meningitis pathogen Cryptococcus neoformans is a central driver of mortality in HIV/AIDS. We report a genome-scale chemical genetic data map for this pathogen that quantifies the impact of 439 small-molecule challenges on 1,448 gene knockouts. We identified chemical phenotypes for 83% of mutants screened and at least one genetic response for each compound. C. neoformans chemical-genetic responses are largely distinct from orthologous published profiles of Saccharomyces cerevisiae, demonstrating the importance of pathogen-centered studies. We used the chemical-genetic matrix to predict novel pathogenicity genes, infer compound mode of action, and to develop an algorithm, O2M, that predicts antifungal synergies. These predictions were experimentally validated, thereby identifying virulence genes, a molecule that triggers G2/M arrest and inhibits the Cdc25 phosphatase, and many compounds that synergize with the antifungal drug fluconazole. Our work establishes a chemical-genetic foundation for approaching an infection responsible for greater than one-third of AIDS-related deaths.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Algoritmos , Animais , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Descoberta de Drogas , Técnicas de Inativação de Genes , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/genética , Fatores de Virulência/genética
13.
Genome Biol ; 15(4): R64, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24721214

RESUMO

BACKGROUND: Genome-wide sensitivity screens in yeast have been immensely popular following the construction of a collection of deletion mutants of non-essential genes. However, the auxotrophic markers in this collection preclude experiments on minimal growth medium, one of the most informative metabolic environments. Here we present quantitative growth analysis for mutants in all 4,772 non-essential genes from our prototrophic deletion collection across a large set of metabolic conditions. RESULTS: The complete collection was grown in environments consisting of one of four possible carbon sources paired with one of seven nitrogen sources, for a total of 28 different well-defined metabolic environments. The relative contributions to mutants' fitness of each carbon and nitrogen source were determined using multivariate statistical methods. The mutant profiling recovered known and novel genes specific to the processing of nutrients and accurately predicted functional relationships, especially for metabolic functions. A benchmark of genome-scale metabolic network modeling is also given to demonstrate the level of agreement between current in silico predictions and hitherto unavailable experimental data. CONCLUSIONS: These data address a fundamental deficiency in our understanding of the model eukaryote Saccharomyces cerevisiae and its response to the most basic of environments. While choice of carbon source has the greatest impact on cell growth, specific effects due to nitrogen source and interactions between the nutrients are frequent. We demonstrate utility in characterizing genes of unknown function and illustrate how these data can be integrated with other whole-genome screens to interpret similarities between seemingly diverse perturbation types.


Assuntos
Deleção de Genes , Genoma Fúngico , Metaboloma , Saccharomyces cerevisiae/genética , Carbono/metabolismo , Respiração Celular , Fermentação , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo
14.
G3 (Bethesda) ; 3(10): 1741-51, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23979930

RESUMO

Synthetic genetic array (SGA) analysis automates yeast genetics, enabling high-throughput construction of ordered arrays of double mutants. Quantitative colony sizes derived from SGA analysis can be used to measure cellular fitness and score for genetic interactions, such as synthetic lethality. Here we show that SGA colony sizes also can be used to obtain global maps of meiotic recombination because recombination frequency affects double-mutant formation for gene pairs located on the same chromosome and therefore influences the size of the resultant double-mutant colony. We obtained quantitative colony size data for ~1.2 million double mutants located on the same chromosome and constructed a genome-scale genetic linkage map at ~5 kb resolution. We found that our linkage map is reproducible and consistent with previous global studies of meiotic recombination. In particular, we confirmed that the total number of crossovers per chromosome tends to follow a simple linear model that depends on chromosome size. In addition, we observed a previously unappreciated relationship between the size of linkage regions surrounding each centromere and chromosome size, suggesting that crossovers tend to occur farther away from the centromere on larger chromosomes. The pericentric regions of larger chromosomes also appeared to load larger clusters of meiotic cohesin Rec8, and acquire fewer Spo11-catalyzed DNA double-strand breaks. Given that crossovers too near or too far from centromeres are detrimental to homolog disjunction and increase the incidence of aneuploidy, our data suggest that chromosome size may have a direct role in regulating the fidelity of chromosome segregation during meiosis.


Assuntos
Centrômero/genética , Mapeamento Cromossômico/métodos , Cromossomos Fúngicos/genética , Troca Genética , Ligação Genética , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Genoma Fúngico , Meiose , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos
15.
PLoS One ; 8(7): e68664, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874711

RESUMO

Analysis of genetic interaction networks often involves identifying genes with similar profiles, which is typically indicative of a common function. While several profile similarity measures have been applied in this context, they have never been systematically benchmarked. We compared a diverse set of correlation measures, including measures commonly used by the genetic interaction community as well as several other candidate measures, by assessing their utility in extracting functional information from genetic interaction data. We find that the dot product, one of the simplest vector operations, outperforms most other measures over a large range of gene pairs. More generally, linear similarity measures such as the dot product, Pearson correlation or cosine similarity perform better than set overlap measures such as Jaccard coefficient. Similarity measures that involve L2-normalization of the profiles tend to perform better for the top-most similar pairs but perform less favorably when a larger set of gene pairs is considered or when the genetic interaction data is thresholded. Such measures are also less robust to the presence of noise and batch effects in the genetic interaction data. Overall, the dot product measure performs consistently among the best measures under a variety of different conditions and genetic interaction datasets.


Assuntos
Epistasia Genética , Redes Reguladoras de Genes/fisiologia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Transcriptoma , Biologia Computacional , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
16.
Nucleic Acids Res ; 41(Web Server issue): W591-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23677617

RESUMO

Screening genome-wide sets of mutants for fitness defects provides a simple but powerful approach for exploring gene function, mapping genetic networks and probing mechanisms of drug action. For yeast and other microorganisms with global mutant collections, genetic or chemical-genetic interactions can be effectively quantified by growing an ordered array of strains on agar plates as individual colonies, and then scoring the colony size changes in response to a genetic or environmental perturbation. To do so, requires efficient tools for the extraction and analysis of quantitative data. Here, we describe SGAtools (http://sgatools.ccbr.utoronto.ca), a web-based analysis system for designer genetic screens. SGAtools outlines a series of guided steps that allow the user to quantify colony sizes from images of agar plates, correct for systematic biases in the observations and calculate a fitness score relative to a control experiment. The data can also be visualized online to explore the colony sizes on individual plates, view the distribution of resulting scores, highlight genes with the strongest signal and perform Gene Ontology enrichment analysis.


Assuntos
Deleção de Genes , Análise em Microsséries , Software , Gráficos por Computador , Aptidão Genética , Processamento de Imagem Assistida por Computador , Internet , Leveduras/genética , Leveduras/crescimento & desenvolvimento
17.
G3 (Bethesda) ; 3(4): 741-756, 2013 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-23550123

RESUMO

Repetitive elements comprise a significant portion of most eukaryotic genomes. Minisatellites, a type of repetitive element composed of repeat units 15-100 bp in length, are stable in actively dividing cells but change in composition during meiosis and in stationary-phase cells. Alterations within minisatellite tracts have been correlated with the onset of a variety of diseases, including diabetes mellitus, myoclonus epilepsy, and several types of cancer. However, little is known about the factors preventing minisatellite alterations. Previously, our laboratory developed a color segregation assay in which a minisatellite was inserted into the ADE2 gene in the yeast Saccharomyces cerevisiae to monitor alteration events. We demonstrated that minisatellite alterations that occur in stationary-phase cells give rise to a specific colony morphology phenotype known as blebbing. Here, we performed a modified version of the synthetic genetic array analysis to screen for mutants that produce a blebbing phenotype. Screens were conducted using two distinctly different minisatellite tracts: the ade2-min3 construct consisting of three identical 20-bp repeats, and the ade2-h7.5 construct, consisting of seven-and-a-half 28-bp variable repeats. Mutations in 102 and 157 genes affect the stability of the ade2-min3 and ade2-h7.5 alleles, respectively. Only seven hits overlapped both screens, indicating that different factors regulate repeat stability depending upon minisatellite size and composition. Importantly, we demonstrate that mismatch repair influences the stability of the ade2-h7.5 allele, indicating that this type of DNA repair stabilizes complex minisatellites in stationary phase cells. Our work provides insight into the factors regulating minisatellite stability.

18.
Genome Res ; 22(4): 791-801, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22282571

RESUMO

A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase-substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Fosfotransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sítios de Ligação/genética , Western Blotting , Genoma Fúngico/genética , Genômica/métodos , Imunoprecipitação , Modelos Genéticos , Mutação , Motivos de Nucleotídeos/genética , Fosfotransferases/metabolismo , Ligação Proteica , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Genome Res ; 21(8): 1375-87, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21715556

RESUMO

Genetic interactions provide a powerful perspective into gene function, but our knowledge of the specific mechanisms that give rise to these interactions is still relatively limited. The availability of a global genetic interaction map in Saccharomyces cerevisiae, covering ∼30% of all possible double mutant combinations, provides an unprecedented opportunity for an unbiased assessment of the native structure within genetic interaction networks and how it relates to gene function and modular organization. Toward this end, we developed a data mining approach to exhaustively discover all block structures within this network, which allowed for its complete modular decomposition. The resulting modular structures revealed the importance of the context of individual genetic interactions in their interpretation and revealed distinct trends among genetic interaction hubs as well as insights into the evolution of duplicate genes. Block membership also revealed a surprising degree of multifunctionality across the yeast genome and enabled a novel association of VIP1 and IPK1 with DNA replication and repair, which is supported by experimental evidence. Our modular decomposition also provided a basis for testing the between-pathway model of negative genetic interactions and within-pathway model of positive genetic interactions. While we find that most modular structures involving negative genetic interactions fit the between-pathway model, we found that current models for positive genetic interactions fail to explain 80% of the modular structures detected. We also find differences between the modular structures of essential and nonessential genes.


Assuntos
Redes Reguladoras de Genes/genética , Saccharomyces cerevisiae/genética , Genes Fúngicos , Modelos Genéticos , Mapeamento de Interação de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/genética
20.
Nat Biotechnol ; 29(4): 361-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21441928

RESUMO

Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (∼45%) of the 1,101 essential yeast genes, with ∼30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)-based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.


Assuntos
Genes Essenciais , Genoma Fúngico , Saccharomyces cerevisiae/genética , Temperatura , Alelos , Bases de Dados Genéticas , Genes Fúngicos , Genes Letais , Engenharia Genética/métodos , Loci Gênicos , Espectrometria de Massas/métodos , Análise em Microsséries/métodos , Microscopia Confocal , Mutação , Fenótipo , Plasmídeos , RNA Mensageiro , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Célula Única , Tubulina (Proteína)/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...