Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7993): 101-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093010

RESUMO

Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed1-6. However, missing from these measurements is the ability to routinely and easily spatially localize these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as an input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 µm spatial resolution and delivered whole-transcriptome data that are indistinguishable in quality from ordinary single-nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualized receptor-ligand interactions driving B cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost any single-cell measurement technology. As a proof of principle, we performed multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences in the same cells from metastatic melanoma, identifying transcription factor motifs driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.


Assuntos
Código de Barras de DNA Taxonômico , Genômica , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Código de Barras de DNA Taxonômico/métodos , Epigênese Genética , Perfilação da Expressão Gênica , Genômica/métodos , Melanoma/genética , Melanoma/patologia , Tonsila Palatina/citologia , Tonsila Palatina/metabolismo , Receptores de Antígenos de Linfócitos T/genética , RNA/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Microambiente Tumoral , Hipocampo/citologia , Hipocampo/metabolismo , Análise da Expressão Gênica de Célula Única , Especificidade de Órgãos , Ligantes , Elementos de Resposta/genética , Fatores de Transcrição/metabolismo
3.
Nature ; 624(7991): 333-342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092915

RESUMO

The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types and their positions within individual anatomical structures remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signalling, elucidated region-specific specializations in activity-regulated gene expression and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource ( www.BrainCellData.org ), should find diverse applications across neuroscience, including the construction of new genetic tools and the prioritization of specific cell types and circuits in the study of brain diseases.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Animais , Camundongos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Hipotálamo/citologia , Hipotálamo/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Fenótipo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Análise da Expressão Gênica de Célula Única , Transcriptoma/genética
4.
Nat Neurosci ; 26(11): 1929-1941, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37919612

RESUMO

In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.


Assuntos
Núcleos Parabraquiais , Células de Purkinje , Células de Purkinje/fisiologia , Cerebelo , Prosencéfalo/fisiologia , Neurônios/metabolismo
5.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774681

RESUMO

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Assuntos
Doença de Alzheimer , Lobo Frontal , Microglia , Neurônios , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Microglia/patologia , Neurônios/patologia , Células Piramidais , Biópsia , Lobo Frontal/patologia , Análise da Expressão Gênica de Célula Única , Núcleo Celular/metabolismo , Núcleo Celular/patologia
6.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333365

RESUMO

Cellular perturbations underlying Alzheimer's disease are primarily studied in human postmortem samples and model organisms. Here we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of Alzheimer's disease pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the Early Cortical Amyloid Response-were prominent in neurons, wherein we identified a transient state of hyperactivity preceding loss of excitatory neurons, which correlated with the selective loss of layer 1 inhibitory neurons. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathological burden increased. Lastly, both oligodendrocytes and pyramidal neurons upregulated genes associated with amyloid beta production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.

7.
Nucleic Acids Res ; 51(14): 7109-7124, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37188501

RESUMO

Antisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the central nervous system (CNS). By modulating RNA, they hold the promise of targeting root molecular causes of disease and hold potential to treat myriad CNS disorders. Realization of this potential requires that ASOs must be active in the disease-relevant cells, and ideally, that monitorable biomarkers also reflect ASO activity in these cells. The biodistribution and activity of such centrally delivered ASOs have been deeply characterized in rodent and non-human primate (NHP) models, but usually only in bulk tissue, limiting our understanding of the distribution of ASO activity across individual cells and across diverse CNS cell types. Moreover, in human clinical trials, target engagement is usually monitorable only in a single compartment, CSF. We sought a deeper understanding of how individual cells and cell types contribute to bulk tissue signal in the CNS, and how these are linked to CSF biomarker outcomes. We employed single nucleus transcriptomics on tissue from mice treated with RNase H1 ASOs against Prnp and Malat1 and NHPs treated with an ASO against PRNP. Pharmacologic activity was observed in every cell type, though sometimes with substantial differences in magnitude. Single cell RNA count distributions implied target RNA suppression in every single sequenced cell, rather than intense knockdown in only some cells. Duration of action up to 12 weeks post-dose differed across cell types, being shorter in microglia than in neurons. Suppression in neurons was generally similar to, or more robust than, the bulk tissue. In macaques, PrP in CSF was lowered 40% in conjunction with PRNP knockdown across all cell types including neurons, arguing that a CSF biomarker readout is likely to reflect ASO pharmacodynamic effect in disease-relevant cells in a neuronal disorder. Our results provide a reference dataset for ASO activity distribution in the CNS and establish single nucleus sequencing as a method for evaluating cell type specificity of oligonucleotide therapeutics and other modalities.


Antisense oligonucleotide (ASO) drugs are a type of chemically modified DNA that can be injected into cerebrospinal fluid in order to enter brain cells and reduce the amount of RNA from a specific gene. The brain is a complex mixture of hundreds of billions of cells. When an ASO lowers a target gene's RNA by 50%, is that a 50% reduction in 100% of cells, or a 100% reduction in 50% of cells? Are the many different cell types of the brain affected equally? This new study uses single cell RNA sequencing to answer these questions, finding that ASOs are broadly active across cell types and individual cells, and linking reduction of target protein in cerebrospinal fluid to disease-relevant cells.


Assuntos
Encéfalo , Oligonucleotídeos Antissenso , Animais , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/análise , RNA/metabolismo , Distribuição Tecidual , Fatores de Transcrição/metabolismo , Líquido Cefalorraquidiano/química , Doenças do Sistema Nervoso Central/terapia
8.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066158

RESUMO

Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed. Missing from these measurements, however, is the ability to routinely and easily spatially localise these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are 'tagged' with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 micron spatial resolution, and delivered whole-transcriptome data that was indistinguishable in quality from ordinary snRNA-seq. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil, and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualised receptor-ligand interactions driving B-cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to virtually any single-cell measurement technology. As proof of principle, we performed multiomic measurements of open chromatin, RNA, and T-cell receptor sequences in the same cells from metastatic melanoma. We identified spatially distinct tumour subpopulations to be differentially infiltrated by an expanded T-cell clone and undergoing cell state transition driven by spatially clustered accessible transcription factor motifs. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.

9.
Front Immunol ; 14: 1083339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936945

RESUMO

Megakaryocytes (MKs) are precursors to platelets, the second most abundant cells in the peripheral circulation. However, while platelets are known to participate in immune responses and play significant functions during infections, the role of MKs within the immune system remains largely unexplored. Histological studies of sepsis patients identified increased nucleated CD61+ cells (MKs) in the lungs, and CD61+ staining (likely platelets within microthrombi) in the kidneys, which correlated with the development of organ dysfunction. Detailed imaging cytometry of peripheral blood from patients with sepsis found significantly higher MK counts, which we predict would likely be misclassified by automated hematology analyzers as leukocytes. Utilizing in vitro techniques, we show that both stem cell derived MKs (SC MKs) and cells from the human megakaryoblastic leukemia cell line, Meg-01, undergo chemotaxis, interact with bacteria, and are capable of releasing chromatin webs in response to various pathogenic stimuli. Together, our observations suggest that MK cells display some basic innate immune cell behaviors and may actively respond and play functional roles in the pathophysiology of sepsis.


Assuntos
Megacariócitos , Sepse , Humanos , Megacariócitos/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Imunidade Inata , Sepse/metabolismo
10.
bioRxiv ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36945580

RESUMO

The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types, and their positions within individual anatomical structures, remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA-seq with Slide-seq-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain, and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signaling, elucidated region-specific specializations in activity-regulated gene expression, and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource (BrainCellData.org) should find diverse applications across neuroscience, including the construction of new genetic tools, and the prioritization of specific cell types and circuits in the study of brain diseases.

11.
Am J Pathol ; 193(5): 532-547, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804377

RESUMO

Chordoma is a rare malignant tumor demonstrating notochordal differentiation. It is dependent on brachyury (TBXT), a hallmark notochordal gene and transcription factor, and shares histologic features and the same anatomic location as the notochord. This study involved a molecular comparison of chordoma and notochord to identify dysregulated cellular pathways. The lack of a molecular reference from appropriate control tissue limits our understanding of chordoma and its relationship to notochord. Therefore, an unbiased comparison of chordoma, human notochord, and an atlas of normal and cancerous tissue was conducted using gene expression profiling to clarify the chordoma/notochord relationship and potentially identify novel drug targets. The study found striking consistency in gene expression profiles between chordoma and notochord, supporting the hypothesis that chordoma develops from notochordal remnants. A 12-gene diagnostic chordoma signature was identified and the TBXT/transforming growth factor beta (TGF-ß)/SOX6/SOX9 pathway was hyperactivated in the tumor, suggesting that pathways associated with chondrogenesis were a central driver of chordoma development. Experimental validation in chordoma cells confirmed these findings and emphasized the dependence of chordoma proliferation and survival on TGF-ß. The computational and experimental evidence provided the first molecular connection between notochord and chordoma and identified core members of a chordoma regulatory pathway involving TBXT. This pathway provides new therapeutic targets for this unique malignant neoplasm and highlights TGF-ß as a prime druggable candidate.


Assuntos
Cordoma , Humanos , Cordoma/genética , Cordoma/patologia , Notocorda/metabolismo , Notocorda/patologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
12.
bioRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824749

RESUMO

Antisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the brain and hold the promise of treating myriad brain diseases by modulating RNA. CNS tissue is not routinely biopsied in living individuals, leading to reliance on CSF biomarkers to inform on drug target engagement. Animal models can link CSF biomarkers to brain parenchyma, but our understanding of how individual cells contribute to bulk tissue signal is limited. Here we employed single nucleus transcriptomics on tissue from mice treated with RNase H1 ASOs against Prnp and Malat1 and macaques treated with an ASO against PRNP . Activity was observed in every cell type, though sometimes with substantial differences in magnitude. Single cell RNA count distributions implied target suppression in every single sequenced cell, rather than intense knockdown in only some cells. Duration of action up to 12 weeks post-dose differed across cell types, being shorter in microglia than in neurons. Suppression in neurons was generally similar to, or more robust than, the bulk tissue. In macaques, PrP in CSF was lowered 40% in conjunction with PRNP knockdown across all cell types including neurons, arguing that a CSF biomarker readout is likely to reflect disease-relevant cells in a neuronal disorder.

13.
Nat Neurosci ; 25(5): 588-595, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513515

RESUMO

The loss of dopamine (DA) neurons within the substantia nigra pars compacta (SNpc) is a defining pathological hallmark of Parkinson's disease (PD). Nevertheless, the molecular features associated with DA neuron vulnerability have not yet been fully identified. Here, we developed a protocol to enrich and transcriptionally profile DA neurons from patients with PD and matched controls, sampling a total of 387,483 nuclei, including 22,048 DA neuron profiles. We identified ten populations and spatially localized each within the SNpc using Slide-seq. A single subtype, marked by the expression of the gene AGTR1 and spatially confined to the ventral tier of SNpc, was highly susceptible to loss in PD and showed the strongest upregulation of targets of TP53 and NR2F2, nominating molecular processes associated with degeneration. This same vulnerable population was specifically enriched for the heritable risk associated with PD, highlighting the importance of cell-intrinsic processes in determining the differential vulnerability of DA neurons to PD-associated degeneration.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Genômica , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra
14.
Nat Neurosci ; 25(3): 306-316, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260865

RESUMO

A key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses. To address this issue, we present a rigorously validated protocol that preserves both in vivo transcriptional profiles and cell-type diversity and yield across tissue types and species. We also identify a similar signature in postmortem human brain single-nucleus RNA-sequencing datasets, and show that this signature is induced in freshly isolated human tissue by exposure to elevated temperatures ex vivo. Together, our results provide a methodological solution for preventing artifactual gene expression changes during fresh tissue digestion and a reference for future deeper analysis of the potential confounding states present in postmortem human samples.


Assuntos
Neuroglia , Transcriptoma , Encéfalo , Humanos , Microglia/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
15.
Mol Neurodegener ; 17(1): 16, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197079

RESUMO

BACKGROUND: Epidemiological studies suggest a link between the melanoma-related pigmentation gene melanocortin 1 receptor (MC1R) and risk of Parkinson's disease (PD). We previously showed that MC1R signaling can facilitate nigrostriatal dopaminergic neuron survival. The present study investigates the neuroprotective potential of MC1R against neurotoxicity induced by alpha-synuclein (αSyn), a key player in PD genetics and pathogenesis. METHODS: Nigral dopaminergic neuron toxicity induced by local overexpression of aSyn was assessed in mice that have an inactivating mutation of MC1R, overexpress its wild-type transgene, or were treated with MC1R agonists. The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in MC1R-mediated protection against αSyn was characterized in vitro. Furthermore, MC1R expression was determined in human postmortem midbrain from patients with PD and unaffected subjects. RESULTS: Targeted expression of αSyn in the nigrostriatal pathway induced exacerbated synuclein pathologies in MC1R mutant mice, which were accompanied by neuroinflammation and altered Nrf2 responses, and reversed by the human MC1R transgene. Two MC1R agonists were neuroprotective against αSyn-induced dopaminergic neurotoxicity. In vitro experiments showed that Nrf2 was a necessary mediator of MC1R effects. Lastly, MC1R was present in dopaminergic neurons in the human substantia nigra and appeared to be reduced at the tissue level in PD patients. CONCLUSION: Our study supports an interaction between MC1R and αSyn that can be mediated by neuronal MC1R possibly through Nrf2. It provides evidence for MC1R as a therapeutic target and a rationale for development of MC1R-activating strategies for PD.


Assuntos
Doença de Parkinson , Receptor Tipo 1 de Melanocortina , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Doença de Parkinson/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , alfa-Sinucleína/metabolismo
17.
Nat Methods ; 18(11): 1352-1362, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34711971

RESUMO

Charting an organs' biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomically integrated spatial map at single-cell resolution of the visual and somatomotor areas.


Assuntos
Encéfalo/metabolismo , Cromatina/genética , Aprendizado Profundo , Regulação da Expressão Gênica , Análise de Célula Única/métodos , Software , Transcriptoma , Animais , Cromatina/química , Cromatina/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Sequências Reguladoras de Ácido Nucleico
18.
Nature ; 598(7879): 214-219, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616064

RESUMO

The cerebellar cortex is a well-studied brain structure with diverse roles in motor learning, coordination, cognition and autonomic regulation. However,  a complete inventory of cerebellar cell types is currently lacking. Here, using recent advances in high-throughput transcriptional profiling1-3, we molecularly define cell types across individual lobules of the adult mouse cerebellum. Purkinje neurons showed considerable regional specialization, with the greatest diversity occurring in the posterior lobules. For several types of cerebellar interneuron, the molecular variation within each type was more continuous, rather than discrete. In particular, for the unipolar brush cells-an interneuron population previously subdivided into discrete populations-the continuous variation in gene expression was associated with a graded continuum of electrophysiological properties. Notably, we found that molecular layer interneurons were composed of two molecularly and functionally distinct types. Both types show a continuum of morphological variation through the thickness of the molecular layer, but electrophysiological recordings revealed marked differences between the two types in spontaneous firing, excitability and electrical coupling. Together, these findings provide a comprehensive cellular atlas of the cerebellar cortex, and outline a methodological and conceptual framework for the integration of molecular, morphological and physiological ontologies for defining brain cell types.


Assuntos
Córtex Cerebelar/citologia , Perfilação da Expressão Gênica , Transcriptoma , Adulto , Animais , Atlas como Assunto , Eletrofisiologia , Feminino , Humanos , Interneurônios/classificação , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/classificação , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/classificação , Neurônios/citologia , Neurônios/metabolismo
19.
Cell Rep ; 37(3): 109839, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34624208

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.


Assuntos
COVID-19/genética , COVID-19/imunologia , MicroRNAs/genética , SARS-CoV-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antivirais/farmacologia , Biomarcadores/metabolismo , Cricetinae , Feminino , Furões , Regulação da Expressão Gênica , Glicólise , Voluntários Saudáveis , Humanos , Hipóxia , Inflamação , Masculino , Camundongos , Pessoa de Meia-Idade , Proteômica/métodos , Curva ROC , Ratos , Tratamento Farmacológico da COVID-19
20.
bioRxiv ; 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-33948587

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of COVID-19 positive patients, but not detected in COVID-19 negative patients. These findings indicate the potential for developing a novel, minimally invasive, COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we have developed a novel miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...