Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 73(4): 295-312, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36716322

RESUMO

Particulate matter (PM) is a major primary pollutant emitted during wildland fires that has the potential to pose significant health risks to individuals/communities who live and work in areas impacted by smoke events. Limiting exposure is the principle measure available to mitigate health impacts of smoke and therefore the accurate determination of ambient PM concentrations during wildland fire events is critical to protecting public health. However, monitoring air pollutants in smoke impacted environments has proven challenging in that measurement interferences or sampling conditions can result in both positive and negative artifacts. The EPA has performed research on methods for the measurement of PM2.5 in a series of laboratory-based studies including evaluation in smoke. This manuscript will summarize the results of the laboratory-based evaluation of federal equivalent method (FEM) monitors for PM2.5 with particular attention being given to the Teledyne-API Model T640 PM Mass monitor, as compared to the filter-based federal reference method (FRM). The T640 is an optical-based PM monitor and has been gaining wide use by state and local agencies in monitoring for PM2.5 U.S. National Ambient Air Quality Standards (NAAQS) attainment. At present, the T640 (includes both T640 and T640×) comprises ~44% of the PM2.5 FEM monitors in U.S. regulatory monitoring networks. In addition, the T640 has increasingly been employed for the higher time resolution comparison/evaluation of low-cost PM sensors including during smoke impacted events. Results from controlled non-smoke laboratory studies using generated ammonium sulfate aerosols demonstrated a generally negative T640 measurement artifact that was significantly related to the PM2.5 concentration and particle size distribution. Results from biomass burning chamber studies demonstrated positive and negative artifacts significantly associated with PM2.5 concentration and optical wavelength-dependent absorption properties of the smoke aerosol.Implications: The results detailed in this paper will provide state and local air monitoring agencies with the tools and knowledge to address PM2.5 measurement challenges in areas frequently impacted by wildland fire smoke. The observed large positive and negative artifacts in the T640 PM mass determination have the potential to result in false exceedances of the PM2.5 NAAQS or in the disqualification of monitoring data through an exceptional event designation. In addition, the observed artifacts in smoke impacted air will have a detrimental effect on providing reliable public information when wildfires occur and also in identifying reference measurements for small sensor evaluation studies. Other PM2.5 FEMs such as the BAM-1022 perform better in smoke and are comparable to the filter-based FRM. Care must be taken in choosing high time resolution FEM monitors that will be operated at smoke impacted sites. Accurate methods, such as the FRM and BAM-1022 will reduce the burden of developing and reviewing exceptional event request packages, data loss/disqualification, and provide states with tools to adequately evaluate public exposure risks and provide accurate public health messaging during wildfire/smoke events.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/análise , Fumaça/análise , Sulfato de Amônio , Artefatos , Biomassa , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Aerossóis , Monitoramento Ambiental/métodos
2.
Aerosol Sci Technol ; 52(1): 98-113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681677

RESUMO

Several low-volume inlets (flow rates ≤16.7 liters per minute (Lpm)) are commercially available as components of low-cost, portable ambient particulate matter samplers. Because the inlets themselves do not contain internal fractionators, they are often assumed to representatively sample "total" mass concentrations from the ambient air, independent of aerodynamic particle size and wind speed. To date, none of these so-called "TSP" inlets have been rigorously tested under controlled conditions. To determine their actual size-selective performance under conditions of expected use, wind tunnel tests of six commonly used omnidirectional, low-volume inlets were conducted using solid, polydisperse aerosols at wind speeds of 2, 8, and 24 km/hr. With the exception of axially-oriented, isokinetic sharp-edge nozzles operating at 5 and 10 Lpm, all low-volume inlets showed some degree of non-ideal sampling performance as a function of aerodynamic particle size and wind speed. Depending upon wind speed and assumed ambient particle size distribution, total mass concentration measurements were estimated to be negatively biased by as much as 66%. As expected from particle inertial considerations, inlet efficiency tended to degrade with increasing wind speed and particle size, although some exceptions were noted. The implications of each inlet's non-ideal behavior are discussed with regards to expected total mass concentration measurement during ambient sampling and the ability to obtain representative sampling for size ranges of interest, such as PM2.5 and PM10. Overall test results will aid in low-volume inlet selection and with proper interpretation of results obtained with their ambient field use.

3.
Aerosol Sci Technol ; 52: 957-970, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35169350

RESUMO

Accurate development and evaluation of inlets for representatively collecting ambient particulate matter typically involves use of monodisperse particles in aerosol wind tunnels. However, the resource requirements of using monodisperse aerosols for inlet evaluation creates the need for more rapid and less-expensive techniques to enable determination of size-selective performance in aerosol wind tunnels. The goal of recent wind tunnel research at the U.S. EPA was to develop and validate the use of polydisperse aerosols which provide more rapid, less resource-intensive test results which still meet data quality requirements necessary for developing and evaluating ambient aerosol inlets. This goal was successfully achieved through comprehensive efforts regarding polydisperse aerosol generation, dispersion, collection, extraction, and analysis over a wide range of aerodynamic particle sizes. Using proper experimental techniques, a sampler's complete size-selective efficiency curve can be estimated with polydisperse aerosols in a single test, as opposed to the use of monodisperse aerosols which require conducting multiple tests using several different particle sizes. While this polydisperse aerosol technique is not proposed as a regulatory substitute for use of monodisperse aerosols, the use of polydisperse aerosols is advantageous during an inlet's development where variables of sampling flow rate and inlet geometry are often iteratively evaluated before a final inlet design can be successfully achieved. Complete Standard Operating Procedures for the generation, collection, and analysis of polydisperse calibration aerosols are available from EPA as downloadable files. The described experimental methods will be of value to other researchers during development of ambient sampling inlets and size-selective evaluation of the inlets in aerosol wind tunnels.

4.
Aerosol Sci Technol ; 51(7): 868-878, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32025079

RESUMO

Under the National Ambient Air Quality Standard (NAAQS) for airborne lead, measurements are conducted by means of a high-volume total suspended particulate matter (Hi-Vol TSP) sampler. In the decade between 1973 and 1983, there were 12 publications that explored the sampling characteristics and effectiveness of the Hi-Vol TSP, yet there persists uncertainty regarding its performance. This article presents an overview of the existing literature on the performance of the Hi-Vol TSP, and identifies the reported sampler effectiveness with respect to four factors: particle size (reported effectiveness of 7%-100%), wind speed (-36% to 100%), sampler orientation (7%-100%), and operational state (107%-140%). Effectiveness of the Hi-Vol TSP was evaluated with a solid, polydisperse aerosol in a controlled wind tunnel setting. Isokinetic samplers were deployed alongside the Hi-Vol TSP to investigate three wind speeds (2, 8, and 24 km h-1), three sampler orientations (0°, 45°, 90°), and two operational states (on, off) for aerosols with aerodynamic diameters from 5 to 35 µm. Results indicate that particle diameter was the largest determining factor of effectiveness followed by wind speed. Orientation of the sampler did not have a significant effect at 2 and 8 km h-1 but did at 24 km h-1. In a passive state, the Hi-Vol TSP was collected between 1% and 7% of available aerosol depending on particle size and wind speed. Results of this research do not invalidate results of previous studies but rather contribute to our overall understanding of the Hi-Vol TSP's size-selective performance. While results generally agreed with previous studies, the Hi-Vol TSP was found to exhibit less dependence on these four factors than previously reported.

5.
J Environ Monit ; 10(4): 541-51, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18385876

RESUMO

Real-time particle sizers provide rapid information about atmospheric particles, particularly peak exposures, which may be important in the development of adverse health outcomes. However, these instruments are subject to erroneous readings in high-humidity environments when compared with measurements from filter-based, federal reference method (FRM) samplers. Laboratory tests were conducted to evaluate the ability of three inlet conditioners to dry aerosol prior to entering a real-time particle sizer for measuring coarse aerosols (Model 3321 Aerodynamic Particle Sizer, APS) under simulated highly humid conditions. Two 30 day field studies in Birmingham, AL, USA were conducted to compare the response of two APSs operated with and without an inlet conditioner to that measured with FRM samplers. In field studies, the correlation of PM(10-2.5) derived from the APS and that measured with the FRM was substantially stronger with an inlet conditioner applied (r2 ranged from 0.91 to 0.99) than with no conditioner (r2 = 0.61). Laboratory experiments confirmed the ability of the heater and desiccant conditioner to remove particle-borne moisture. In field tests, water was found associated with particles across the sizing range of the APS (0.5 microm to 20 microm) when relative humidity was high in Birmingham. Certain types of inlet conditioners may substantially improve the correlation between particulate mass concentration derived from real-time particle sizers and filter-based samplers in humid conditions.


Assuntos
Ar Condicionado , Ar , Monitoramento Ambiental , Desenho de Equipamento , Tamanho da Partícula , Material Particulado/análise , Ar/análise , Ar/normas , Ar Condicionado/instrumentação , Ar Condicionado/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Umidade
6.
J Air Waste Manag Assoc ; 57(1): 14-30, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17269226

RESUMO

Subsequent to the 1997 promulgation of the Federal Reference Method (FRM) for monitoring fine particulate matter (PM2.5) in ambient air, U.S. Environmental Protection Agency (EPA) received reports that the DOW 704 diffusion oil used in the method's Well Impactor Ninety-Six (WINS) fractionator would occasionally crystallize during field use, particularly under wintertime conditions. Although the frequency of occurrence on a nationwide basis was low, uncertainties existed as to whether crystallization of the DOW 704 oil may adversely affect a sampling event's data quality. In response to these concerns, EPA and the State of Connecticut Department of Environmental Protection jointly conducted a series of specialized tests to determine whether crystallized oil adversely affected the performance of the WINS fractionator. In the laboratory, an experimental setup used dry ice to artificially induce crystallization of the diffusion oil under controlled conditions. Using primary polystyrene latex calibration aerosols, standard size-selective performance tests of the WINS fractionator showed that neither the position nor the shape of the WINS particle size fractionation curve was substantially influenced by the crystallization of the DOW 704 oil. No large particle bounce from the crystallized impaction surface was observed. During wintertime field tests, crystallization of the DOW 704 oil did not adversely affect measured PM2.5 concentrations. Regression of measurements with crystallized DOW 704 versus liquid dioctyl sebacate (DOS) oil produced slope, intercept, and R2 values of 0.98, 0.1, and 0.997 microg/m3, respectively. Additional field tests validated the use of DOS as an effective impaction substrate. As a result of these laboratory and field tests, DOS oil has been approved by EPA as a substitute for DOW 704 oil. Since the field deployment of DOS oil in 2001, users of this alternative oil have not reported any operational problems associated with its use in the PM2.5 FRM. Limited field evaluation of the BGI very sharp cut cyclone indicates that it provides a viable alternative to the WINS fractionator.


Assuntos
Poluição do Ar/análise , Monitoramento Ambiental/instrumentação , Óleos/química , Calibragem , Cristalização , Tamanho da Partícula , Reprodutibilidade dos Testes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA