Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38700104

RESUMO

While biallelic POLR3A loss-of-function variants are traditionally linked to hypomyelinating leukodystrophy, patients with a specific splice variant c.1909+22G>A manifest as adolescent-onset spastic ataxia without overt leukodystrophy. In this study, we reported eight new cases, POLR3A-related disorder with c.1909+22 variant. One of these patients showed expanded phenotypic spectrum of generalised dystonia and her sister remained asymptomatic except for hypodontia. Two patients with dystonic arm tremor responded to deep brain stimulation. In our systemic literature review, we found that POLR3A-related disorder with c.1909+22 variant has attenuated disease severity but frequency of dystonia and upper limb tremor did not differ among genotypes.

2.
Neurol Genet ; 10(3): e200147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38779172

RESUMO

Background and Objectives: GGC repeat expansions in the NOTCH2NLC gene are associated with a broad spectrum of progressive neurologic disorders, notably, neuronal intranuclear inclusion disease (NIID). We aimed to investigate the population-wide prevalence and clinical manifestations of NOTCH2NLC-related disorders in Koreans. Methods: We conducted a study using 2 different cohorts from the Korean population. Patients with available brain MRI scans from Seoul National University Hospital (SNUH) were thoroughly reviewed, and NIID-suspected patients presenting the zigzag edging signs underwent genetic evaluation for NOTCH2NLC repeats by Cas9-mediated nanopore sequencing. In addition, we analyzed whole-genome sequencing data from 3,887 individuals in the Korea Biobank cohort to estimate the distribution of the repeat counts in Koreans and to identify putative patients with expanded alleles and neurologic phenotypes. Results: In the SNUH cohort, among 90 adult-onset leukoencephalopathy patients with unknown etiologies, we found 20 patients with zigzag edging signs. Except for 2 diagnosed with fragile X-associated tremor/ataxia syndrome and 2 with unavailable samples, all 16 patients (17.8%) were diagnosed with NIID (repeat range: 87-217). By analyzing the Korea Biobank cohort, we estimated the distribution of repeat counts and threshold (>64) for Koreans, identifying 6 potential patients with NIID. Furthermore, long-read sequencing enabled the elucidation of transmission and epigenetic patterns of NOTCH2NLC repeats within a family affected by pediatric-onset NIID. Discussion: This study presents the population-wide distribution of NOTCH2NLC repeats and the estimated prevalence of NIID in Koreans, providing valuable insights into the association between repeat counts and disease manifestations in diverse neurologic disorders.

3.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480682

RESUMO

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Assuntos
Encefalopatias , Humanos , Acetilação , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatias/genética , Padrões de Herança , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
4.
Orphanet J Rare Dis ; 19(1): 15, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221620

RESUMO

BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder resulting from pathogenic variants in three distinct genes, with most of the variants occurring in the electron transfer flavoprotein-ubiquinone oxidoreductase gene (ETFDH). Recent evidence of potential founder variants for MADD in the South African (SA) population, initiated this extensive investigation. As part of the International Centre for Genomic Medicine in Neuromuscular Diseases study, we recruited a cohort of patients diagnosed with MADD from academic medical centres across SA over a three-year period. The aim was to extensively profile the clinical, biochemical, and genomic characteristics of MADD in this understudied population. METHODS: Clinical evaluations and whole exome sequencing were conducted on each patient. Metabolic profiling was performed before and after treatment, where possible. The recessive inheritance and phase of the variants were established via segregation analyses using Sanger sequencing. Lastly, the haplotype and allele frequencies were determined for the two main variants in the four largest SA populations. RESULTS: Twelve unrelated families (ten of White SA and two of mixed ethnicity) with clinically heterogeneous presentations in 14 affected individuals were observed, and five pathogenic ETFDH variants were identified. Based on disease severity and treatment response, three distinct groups emerged. The most severe and fatal presentations were associated with the homozygous c.[1067G > A];c.[1067G > A] and compound heterozygous c.[976G > C];c.[1067G > A] genotypes, causing MADD types I and I/II, respectively. These, along with three less severe compound heterozygous genotypes (c.[1067G > A];c.[1448C > T], c.[740G > T];c.[1448C > T], and c.[287dupA*];c.[1448C > T]), resulting in MADD types II/III, presented before the age of five years, depending on the time and maintenance of intervention. By contrast, the homozygous c.[1448C > T];c.[1448C > T] genotype, which causes MADD type III, presented later in life. Except for the type I, I/II and II cases, urinary metabolic markers for MADD improved/normalised following treatment with riboflavin and L-carnitine. Furthermore, genetic analyses of the most frequent variants (c.[1067G > A] and c.[1448C > T]) revealed a shared haplotype in the region of ETFDH, with SA population-specific allele frequencies of < 0.00067-0.00084%. CONCLUSIONS: This study reveals the first extensive genotype-phenotype profile of a MADD patient cohort from the diverse and understudied SA population. The pathogenic variants and associated variable phenotypes were characterised, which will enable early screening, genetic counselling, and patient-specific treatment of MADD in this population.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Pré-Escolar , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação/genética , África do Sul , Genótipo , Riboflavina/uso terapêutico , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/uso terapêutico , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo
6.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853102

RESUMO

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Assuntos
Exoma , Doenças Raras , Humanos , Doenças Raras/genética , Benchmarking , Sequenciamento do Exoma , Testes Genéticos/métodos
7.
J Med Genet ; 61(3): 232-238, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37813462

RESUMO

BACKGROUND: The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. METHODS: Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency (MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. RESULTS: Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. CONCLUSIONS: We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways.


Assuntos
Doenças do Tecido Conjuntivo , Síndrome de Ehlers-Danlos , Criança , Humanos , Estudo de Associação Genômica Ampla , Estudos Longitudinais , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética
8.
Front Zool ; 20(1): 36, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950221

RESUMO

BACKGROUND: The common bedbug Cimex lectularius is a widespread ectoparasite on humans and bats. Two genetically isolated lineages, parasitizing either human (HL) or bat (BL) hosts, have been suggested to differentiate because of their distinct ecology. The distribution range of BL is within that of HL and bedbugs live mostly on synanthropic bat hosts. This sympatric co-occurrence predicts strong reproductive isolation at the post-copulatory level. RESULTS: We tested the post-copulatory barrier in three BL and three HL populations in reciprocal crosses, using a common-garden blood diet that was novel to both lineages. We excluded pre-copulation isolation mechanisms and studied egg-laying rates after a single mating until the depletion of sperm, and the fitness of the resulting offspring. We found a higher sperm storage capability in BL, likely reflecting the different seasonal availability of HL and BL hosts. We also observed a notable variation in sperm function at the population level within lineages and significant differences in fecundity and offspring fitness between lineages. However, no difference in egg numbers or offspring fitness was observed between within- and between-lineage crosses. CONCLUSIONS: Differences in sperm storage or egg-laying rates between HL and BL that we found did not affect reproductive isolation. Neither did the population-specific variation in sperm function. Overall, our results show no post-copulatory reproductive isolation between the lineages. How genetic differentiation in sympatry is maintained in the absence of a post-copulatory barrier between BL and HL remains to be investigated.

9.
Front Neurol ; 14: 1239725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37712079

RESUMO

Introduction: Limited diagnostics are available for inherited neuromuscular diseases (NMD) in South Africa and (excluding muscle disease) are mainly aimed at the most frequent genes underlying genetic neuropathy (GN) and spastic ataxias in Europeans. In this study, we used next-generation sequencing to screen 61 probands with GN, hereditary spastic paraplegia (HSP), and spastic ataxias for a genetic diagnosis. Methods: After identifying four GN probands with PMP22 duplication and one spastic ataxia proband with SCA1, the remaining probands underwent whole exome (n = 26) or genome sequencing (n = 30). The curation of coding/splice region variants using gene panels was guided by allele frequencies from internal African-ancestry control genomes (n = 537) and the Clinical Genome Resource's Sequence Variant Interpretation guidelines. Results: Of 32 GN probands, 50% had African-genetic ancestry, and 44% were solved: PMP22 (n = 4); MFN2 (n = 3); one each of MORC2, ATP1A1, ADPRHL2, GJB1, GAN, MPZ, and ATM. Of 29 HSP probands (six with predominant ataxia), 66% had African-genetic ancestry, and 48% were solved: SPG11 (n = 3); KIF1A (n = 2); and one each of SPAST, ATL1, SPG7, PCYT2, PSEN1, ATXN1, ALDH18A1, CYP7B1, and RFT1. Structural variants in SPAST, SPG11, SPG7, MFN2, MPZ, KIF5A, and GJB1 were excluded by computational prediction and manual visualisation. Discussion: In this preliminary cohort screening panel of disease genes using WES/WGS data, we solved ~50% of cases, which is similar to diagnostic yields reported for global cohorts. However, the mutational profile among South Africans with GN and HSP differs substantially from that in the Global North.

10.
Sci Rep ; 13(1): 13874, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620324

RESUMO

Gaining insight into the genetic regulation of gene expression in human brain is key to the interpretation of genome-wide association studies for major neurological and neuropsychiatric diseases. Expression quantitative trait loci (eQTL) analyses have largely been used to achieve this, providing valuable insights into the genetic regulation of steady-state RNA in human brain, but not distinguishing between molecular processes regulating transcription and stability. RNA quantification within cellular fractions can disentangle these processes in cell types and tissues which are challenging to model in vitro. We investigated the underlying molecular processes driving the genetic regulation of gene expression specific to a cellular fraction using allele-specific expression (ASE). Applying ASE analysis to genomic and transcriptomic data from paired nuclear and cytoplasmic fractions of anterior prefrontal cortex, cerebellar cortex and putamen tissues from 4 post-mortem neuropathologically-confirmed control human brains, we demonstrate that a significant proportion of genetic regulation of gene expression occurs post-transcriptionally in the cytoplasm, with genes undergoing this form of regulation more likely to be synaptic. These findings have implications for understanding the structure of gene expression regulation in human brain, and importantly the interpretation of rapidly growing single-nucleus brain RNA-sequencing and eQTL datasets, where cytoplasm-specific regulatory events could be missed.


Assuntos
Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Frações Subcelulares , Núcleo Solitário , RNA
11.
Expert Rev Mol Diagn ; 23(9): 797-814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642407

RESUMO

INTRODUCTION: Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. AREAS COVERED: In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. EXPERT OPINION: We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants.


Mitochondria generate our bodies' energy, and they contain their own circular DNA molecules. Changes in this mitochondrial DNA can cause a wide range of genetic diseases. Improved computer processing of the sequence of this DNA and new techniques that can read the full DNA sequence in one experiment may enhance our ability to understand these genetic variants.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Análise de Sequência de DNA/métodos , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos
12.
Genet Med ; 25(1): 76-89, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331550

RESUMO

PURPOSE: Nonerythrocytic αII-spectrin (SPTAN1) variants have been previously associated with intellectual disability and epilepsy. We conducted this study to delineate the phenotypic spectrum of SPTAN1 variants. METHODS: We carried out SPTAN1 gene enrichment analysis in the rare disease component of the 100,000 Genomes Project and screened 100,000 Genomes Project, DECIPHER database, and GeneMatcher to identify individuals with SPTAN1 variants. Functional studies were performed on fibroblasts from 2 patients. RESULTS: Statistically significant enrichment of rare (minor allele frequency < 1 × 10-5) probably damaging SPTAN1 variants was identified in families with hereditary ataxia (HA) or hereditary spastic paraplegia (HSP) (12/1142 cases vs 52/23,847 controls, p = 2.8 × 10-5). We identified 31 individuals carrying SPTAN1 heterozygous variants or deletions. A total of 10 patients presented with pure or complex HSP/HA. The remaining 21 patients had developmental delay and seizures. Irregular αII-spectrin aggregation was noted in fibroblasts derived from 2 patients with p.(Arg19Trp) and p.(Glu2207del) variants. CONCLUSION: We found that SPTAN1 is a genetic cause of neurodevelopmental disorder, which we classified into 3 distinct subgroups. The first comprises developmental epileptic encephalopathy. The second group exhibits milder phenotypes of developmental delay with or without seizures. The final group accounts for patients with pure or complex HSP/HA.


Assuntos
Epilepsia , Paraplegia Espástica Hereditária , Humanos , Espectrina/genética , Mutação , Epilepsia/genética , Fenótipo , Ataxia , Paraplegia Espástica Hereditária/genética , Convulsões , Paraplegia , Linhagem
13.
Nat Commun ; 13(1): 6324, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344503

RESUMO

Diagnostic whole genome sequencing (WGS) is increasingly used in rare diseases. However, standard, semi-automated WGS analysis may overlook diagnoses in complex disorders. Here, we show that specialist multidisciplinary analysis of WGS, following an initial 'no primary findings' (NPF) report, improves diagnostic rates and alters management. We undertook WGS in 102 adults with diagnostically challenging primary mitochondrial disease phenotypes. NPF cases were reviewed by a genomic medicine team, thus enabling bespoke informatic approaches, co-ordinated phenotypic validation, and functional work. We enhanced the diagnostic rate from 16.7% to 31.4%, with management implications for all new diagnoses, and detected strong candidate disease-causing variants in a further 3.9% of patients. This approach presents a standardised model of care that supports mainstream clinicians and enhances diagnostic equity for complex disorders, thereby facilitating access to the potential benefits of genomic healthcare. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project: http://www.genomicsengland.co.uk .


Assuntos
Genoma , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Fenótipo
14.
Genet Med ; 24(12): 2487-2500, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36136088

RESUMO

PURPOSE: The chaperone protein BiP is the master regulator of the unfolded protein response in the endoplasmic reticulum. BiP chaperone activity is regulated by the post-translational modification AMPylation, exclusively provided by FICD. We investigated whether FICD variants identified in patients with motor neuron disease could interfere with BiP activity regulation. METHODS: Exome sequencing was performed to identify causative pathogenic variants associated with motor neuron diseases. Functional studies were conducted on fibroblasts from patients to explore the molecular mechanism of the disease. RESULTS: We identified biallelic variants in FICD causing a neurodegenerative disease of upper and lower motor neurons. Affected individuals harbor a specific missense variant, Arg374His, positioned in the catalytic motif of the enzyme and important for adenosine triphosphate binding. The mutated residue abolishes intramolecular interaction with the regulatory residue Glu234, essential to inhibit AMPylation and to promote de-AMPylation by FICD. Consequently, fibroblasts from patients with FICD variants have abnormally increased levels of AMPylated and thus inactivated BiP. CONCLUSION: Loss of BiP chaperone activity in patients likely results in a chronic impairment of the protein quality control system in the endoplasmic reticulum. These findings will guide the development of therapeutic strategies for motoneuron and related diseases linked to proteotoxic stress.


Assuntos
Doença dos Neurônios Motores , Doenças Neurodegenerativas , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperona BiP do Retículo Endoplasmático , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo
15.
J Neurol Neurosurg Psychiatry ; 93(1): 48-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34518334

RESUMO

OBJECTIVE: Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). METHODS: In this large observational study, we present phenotype-genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. RESULTS: The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients.All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3'-UTR). CONCLUSIONS: This phenotype-genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease's unique molecular genetics.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Filamentos Intermediários/genética , Adulto , Éxons , Feminino , Genótipo , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Neurofilamentos/genética , Neurônios , Linhagem , Fenótipo , Nervo Sural , Adulto Jovem
16.
N Engl J Med ; 385(20): 1868-1880, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758253

RESUMO

BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).


Assuntos
Genoma Humano , Doenças Raras/genética , Adolescente , Adulto , Criança , Pré-Escolar , Características da Família , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reação em Cadeia da Polimerase , Doenças Raras/diagnóstico , Sensibilidade e Especificidade , Medicina Estatal , Reino Unido , Sequenciamento Completo do Genoma , Adulto Jovem
17.
Ann Clin Transl Neurol ; 8(10): 1961-1969, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506082

RESUMO

Whole exome sequencing and linkage analysis were performed in a three generational pedigree of Greek origin with a broad phenotypic spectrum spanning from Parkinson's disease and Parkinson's disease dementia to dementia of mixed type (Alzheimer disease and vascular dementia). We identified a novel heterozygous c.G1135T (p.G379W) variant in SORL1 which segregated with the disease in the family. Mutation screening in sporadic Greek PD cases identified one additional individual with the mutation, sharing the same 12.8Mb haplotype. Our findings provide support for SORL1 mutations resulting in a broad range of additional phenotypes and warrants further studies in neurodegenerative diseases beyond AD.


Assuntos
Demência/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Doença de Parkinson/genética , Idoso , Idoso de 80 Anos ou mais , Demência/fisiopatologia , Feminino , Grécia , Humanos , Masculino , Doença de Parkinson/fisiopatologia , Linhagem
18.
Ann Neurol ; 90(2): 193-202, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184781

RESUMO

OBJECTIVE: This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10-17 , odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37-1.66) and rs4519530 (p = 6.98 × 10-17 , OR = 1.47, 95% CI = 1.34-1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10-8 , OR = 1.36, 95% CI = 1.22-1.52), and rs11153082 (p = 1.85 × 10-8 , OR = 1.30, 95% CI = 1.19-1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021;90:193-202.


Assuntos
Cefaleia Histamínica/epidemiologia , Cefaleia Histamínica/genética , Loci Gênicos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Estudos de Casos e Controles , Cefaleia Histamínica/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Suécia/epidemiologia , Reino Unido/epidemiologia
19.
Alzheimers Dement (Amst) ; 13(1): e12186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969176

RESUMO

INTRODUCTION: We investigated the frequency, neuropathology, and phenotypic characteristics of spastic paraplegia (SP) that precedes dementia in presenilin 1 (PSEN1) related familial Alzheimer's disease (AD). METHODS: We performed whole exome sequencing (WES) in 60 probands with hereditary spastic paraplegia (HSP) phenotype that was negative for variants in known HSP-related genes. Where PSEN1 mutation was identified, brain biopsy was performed. We investigated the link between HSP and AD with PSEN1 in silico pathway analysis and measured in vivo the stability of PSEN1 mutant γ-secretase. RESULTS: We identified a PSEN1 variant (p.Thr291Pro) in an individual presenting with pure SP at 30 years of age. Three years later, SP was associated with severe, fast cognitive decline and amyloid deposition with diffuse cortical plaques on brain biopsy. Biochemical analysis of p.Thr291Pro PSEN1 revealed that although the mutation does not alter active γ-secretase reconstitution, it destabilizes γ-secretase-amyloid precursor protein (APP)/amyloid beta (Aßn) interactions during proteolysis, enhancing the production of longer Aß peptides. We then extended our analysis to all 226 PSEN1 pathogenic variants reported and show that 7.5% were associated with pure SP onset followed by cognitive decline later in the disease. We found that PSEN1 cases manifesting initially as SP have a later age of onset, are associated with mutations located beyond codon 200, and showed larger diffuse, cored plaques, amyloid-ring arteries, and severe CAA. DISCUSSION: We show that pure SP can precede dementia onset in PSEN1-related familial AD. We recommend PSEN1 genetic testing in patients presenting with SP with no variants in known HSP-related genes, particularly when associated with a family history of cognitive decline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...