Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4102, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778027

RESUMO

The development of robust tools for segmenting cellular and sub-cellular neuronal structures lags behind the massive production of high-resolution 3D images of neurons in brain tissue. The challenges are principally related to high neuronal density and low signal-to-noise characteristics in thick samples, as well as the heterogeneity of data acquired with different imaging methods. To address this issue, we design a framework which includes sample preparation for high resolution imaging and image analysis. Specifically, we set up a method for labeling thick samples and develop SENPAI, a scalable algorithm for segmenting neurons at cellular and sub-cellular scales in conventional and super-resolution STimulated Emission Depletion (STED) microscopy images of brain tissues. Further, we propose a validation paradigm for testing segmentation performance when a manual ground-truth may not exhaustively describe neuronal arborization. We show that SENPAI provides accurate multi-scale segmentation, from entire neurons down to spines, outperforming state-of-the-art tools. The framework will empower image processing of complex neuronal circuitries.


Assuntos
Algoritmos , Encéfalo , Imageamento Tridimensional , Neurônios , Neurônios/citologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/citologia , Imageamento Tridimensional/métodos , Camundongos , Processamento de Imagem Assistida por Computador/métodos
2.
Front Psychol ; 15: 1348317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756494

RESUMO

The positive effects of meditation on human wellbeing are indisputable, ranging from emotion regulation improvement to stress reduction and present-moment awareness enhancement. Changes in brain activity regulate and support these phenomena. However, the heterogeneity of meditation practices and their cultural background, as well as their poor categorization limit the generalization of results to all types of meditation. Here, we took advantage of a collaboration with the very singular and precious community of the Monks and Geshes of the Tibetan University of Sera-Jey in India to study the neural correlates of the two main types of meditation recognized in Tibetan Buddhism, namely concentrative and analytical meditation. Twenty-three meditators with different levels of expertise underwent to an ecological (i.e., within the monastery) EEG acquisition consisting of an analytical and/or concentrative meditation session at "their best," and with the only constraint of performing a 5-min-long baseline at the beginning of the session. Time-varying power-spectral-density estimates of each session were compared against the baseline (i.e., within session) and between conditions (i.e., analytical vs. concentrative). Our results showed that concentrative meditation elicited more numerous and marked changes in the EEG power compared to analytical meditation, and mainly in the form of an increase in the theta, alpha and beta frequency ranges. Moreover, the full immersion in the Monastery life allowed to share the results and discuss their interpretation with the best scholars of the Monastic University, ensuring the identification of the most expert meditators, as well as to highlight better the differences between the different types of meditation practiced by each of them.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4093-4096, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085736

RESUMO

Human body odors (HBOs) are powerful stimuli that can affect emotional, cognitive and behavioral processes. However, the characterization of the physiological response to HBOs is still to be fully investigated. Here, we analyzed the self-assessed emotion perception and the EEG event-related potentials (ERP) on 17 healthy young women during a simultaneous visual-olfactory stimulation. Particularly, we evaluated the effect of happiness and fear HBO on the amplitude of ERP waveforms elicited by neutral face processing. In addition, we evaluated the subjective valence and arousal perception of the presented neutral faces by means of the self-assessment-manikin test. We observed a significant increase in the amplitude of the late positive potential (LPP) for central left sites (i.e., C3) during the administration of HBOs with respect to clean air. On the other hand, we did not observe any significant change in the subjective valence and arousal scores as well as for the early components of the ERP (i.e., P100, N170, Vertex-Positive-Potential). Our preliminary results suggest that fear and happiness HBO can induce a protracted increase in the LPP, and possibly reflect an automatic and sustained engagement with emotionally significant content.


Assuntos
Reconhecimento Facial , Odor Corporal , Potenciais Evocados , Medo , Feminino , Felicidade , Voluntários Saudáveis , Humanos
4.
Neuroimage ; 249: 118865, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031472

RESUMO

Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor functions in living humans in health and disease.


Assuntos
Nível de Alerta/fisiologia , Tronco Encefálico/fisiologia , Conectoma , Imageamento por Ressonância Magnética , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Adulto , Tronco Encefálico/diagnóstico por imagem , Conectoma/métodos , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem
5.
Neuroimage ; 250: 118925, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074504

RESUMO

Despite remarkable advances in mapping the functional connectivity of the cortex, the functional connectivity of subcortical regions is understudied in living humans. This is the case for brainstem nuclei that control vital processes, such as autonomic, limbic, nociceptive and sensory functions. This is because of the lack of precise brainstem nuclei localization, of adequate sensitivity and resolution in the deepest brain regions, as well as of optimized processing for the brainstem. To close the gap between the cortex and the brainstem, on 20 healthy subjects, we computed a correlation-based functional connectome of 15 brainstem nuclei involved in autonomic, limbic, nociceptive, and sensory function (superior and inferior colliculi, ventral tegmental area-parabrachial pigmented nucleus complex, microcellular tegmental nucleus-prabigeminal nucleus complex, lateral and medial parabrachial nuclei, vestibular and superior olivary complex, superior and inferior medullary reticular formation, viscerosensory motor nucleus, raphe magnus, pallidus, and obscurus, and parvicellular reticular nucleus - alpha part) with the rest of the brain. Specifically, we exploited 1.1mm isotropic resolution 7 Tesla resting-state fMRI, ad-hoc coregistration and physiological noise correction strategies, and a recently developed probabilistic template of brainstem nuclei. Further, we used 2.5mm isotropic resolution resting-state fMRI data acquired on a 3 Tesla scanner to assess the translatability of our results to conventional datasets. We report highly consistent correlation coefficients across subjects, confirming available literature on autonomic, limbic, nociceptive and sensory pathways, as well as high interconnectivity within the central autonomic network and the vestibular network. Interestingly, our results showed evidence of vestibulo-autonomic interactions in line with previous work. Comparison of 7 Tesla and 3 Tesla findings showed high translatability of results to conventional settings for brainstem-cortical connectivity and good yet weaker translatability for brainstem-brainstem connectivity. The brainstem functional connectome might bring new insight in the understanding of autonomic, limbic, nociceptive and sensory function in health and disease.


Assuntos
Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Sistema Nervoso Autônomo/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia
6.
Int J Occup Saf Ergon ; 28(1): 76-85, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32276568

RESUMO

The purpose of this study is to analyze exposure to the time-varying magnetic field caused by worker movements in a 3-T clinical magnetic resonance imaging (MRI) scanner. Measurements of the static magnetic field (B) in the proximity of the MRI scanner were performed to create a detailed map of the spatial gradient of B, in order to indicate the areas at high risk of exposure. Moreover, a personal exposure recording system was used in order to analyze and compare exposure to the static magnetic field during different routine procedures in MRI. We found that for all of the performed work activities, exposure was compliant with International Commission on Non-Ionizing Radiation Protection levels. However, our findings confirm that there is great variability of exposure between different workers and suggest the importance of performing personal exposure measurements and of detailed knowledge of the magnetic field spatial distribution.


Assuntos
Campos Magnéticos , Exposição Ocupacional , Campos Eletromagnéticos/efeitos adversos , Humanos , Imageamento por Ressonância Magnética , Movimento , Exposição Ocupacional/análise
7.
Comput Methods Programs Biomed ; 213: 106509, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800805

RESUMO

BACKGROUND AND OBJECTIVE: The schizophrenia diagnosis represents a difficult task because of the confusing descriptions of symptoms given by the patient, their similarity among several disorders, the lower familiarity with genetic predisposition, and the probably inadequate response to the treatment. Neuro-biological markers of schizophrenia, as a quantitative relationship between the psychiatrist's reports and the biology of the brain, could be used. Functional Magnetic Resonance Imaging (fMRI) obtain the subject's performance in cognitive tasks and may find significant differences between the patient's data and controls. The input data of classifiers may imply alterations in diagnosis; therefore, it is essential to ensure an adequate representation to describe the entire dataset classified. METHODS: We propose a supervoxels-based representation calculated by two main steps: the short-range connectivity, supervoxels' generation using a Fuzzy Iterative Clustering algorithm, and the long-range connectivity, employing Detrended Cross-Correlation Analysis among supervoxels. The unrelated supervoxels, through a statistical test based on critical points calculated empirically, are removed. The remainder supervoxels are the input for feature selectors to extract the discriminative supervoxels. We implement support vector machine classifiers using the correlation coefficient of the significant supervoxels. The dataset of 1.5 Tesla was downloaded from the SchizConnect site, where the fMRI data, during an auditory oddball task, was acquired. We calculate the performance of the classifiers using a leave-one-out cross-validation and compute the area under the Receiver Operating Characteristic curve and a permutation test to ensure no bias in the classifiers. RESULTS: According to the permutation test, with p-values less than the significance level of 0.05, the classifiers extract discriminative class structure from data where no bias is shown. Our supervoxels-based representation gets the maximum values of sensitivity, specificity, and accuracy of 92.9%, 100%, and 96.4%, respectively. The discriminative brain regions, to discern among patients and controls, are extracted; these regions also are mentioned by the related works. CONCLUSIONS: The proposed representation, based on supervoxels, is a data-driven model that does not use predefined models of the signal nor pre-relocated brain regions of interest. The results are competitive against the related works, and the relevant supervoxels are related to the schizophrenia diagnosis.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Esquizofrenia/diagnóstico por imagem , Máquina de Vetores de Suporte
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 492-495, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891340

RESUMO

Photoplethysmography (PPG) is a completely noninvasive, optical method of assessing blood flow dynamics in peripheral vasculature. Wearable devices for PPG recording are becoming increasingly popular, due to their cost-effectiveness and ease of use. For these reasons, many recent scientific studies have proposed the use of pulse rate variability (PRV) extracted from PPG as a surrogate for heart rate variability (HRV), in monitoring autonomic activity and cardiovascular health.In this work, we used a cross-mapping approach, a methodology based on chaos theory, to compare PRV and HRV dynamics, and investigate their agreement according to age and gender of healthy subjects. We used ECG and PPG data acquired from 57 subjects (41 young and 16 elderly) during resting state in the supine position. Signals were gathered from the publicly available VORTAL dataset. Our results showed a statistically significant decrease of PRV reliability as an HRV surrogate in old participants, which was confirmed as significant when only men subjects were analyzed (p-value<0.01).Our findings, although preliminary, suggest greater caution in the use of PPG devices for monitoring cardiovascular health, especially in elderly men.


Assuntos
Eletrocardiografia , Fotopletismografia , Idoso , Sistema Nervoso Autônomo , Feminino , Frequência Cardíaca , Humanos , Masculino , Reprodutibilidade dos Testes
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 604-607, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891366

RESUMO

Olfaction and emotions share common networks in the brain. However, little is known on how the emotional content of odors modulate dynamically the cortico-cortical interactions within these networks. In this preliminary study, we investigated the effect of odor valence on effective connectivity through the use of Dynamic Causal Modeling (DCM). We recorded electroencephalographic (EEG) data from healthy subjects performing a passive odor task of odorants with different valence. Once defined a fully-connected a priori network comprising the pyriform cortex (PC), orbitofrontal cortex (OFC), and entorhinal cortex (EC), we tested the modulatory effect of odor valence on their causal interactions at the group level using the parametric empirical bayes (PEB) framework. Results show that both pleasant and the unpleasant odors have an inhibitory effect on the connection from EC to PC, whereas we did not observe any effect for the neutral odor. Moreover, the odor with positive valence has a stronger influence on connectivity dynamics compared to the negative odor. Although preliminary, our results suggest that odor valence can modulate brain connectivity.


Assuntos
Odorantes , Olfato , Teorema de Bayes , Eletroencefalografia , Emoções , Humanos
10.
Sensors (Basel) ; 21(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34640780

RESUMO

Within the field of Automatic Speech Recognition (ASR) systems, facing impaired speech is a big challenge because standard approaches are ineffective in the presence of dysarthria. The first aim of our work is to confirm the effectiveness of a new speech analysis technique for speakers with dysarthria. This new approach exploits the fine-tuning of the size and shift parameters of the spectral analysis window used to compute the initial short-time Fourier transform, to improve the performance of a speaker-dependent ASR system. The second aim is to define if there exists a correlation among the speaker's voice features and the optimal window and shift parameters that minimises the error of an ASR system, for that specific speaker. For our experiments, we used both impaired and unimpaired Italian speech. Specifically, we used 30 speakers with dysarthria from the IDEA database and 10 professional speakers from the CLIPS database. Both databases are freely available. The results confirm that, if a standard ASR system performs poorly with a speaker with dysarthria, it can be improved by using the new speech analysis. Otherwise, the new approach is ineffective in cases of unimpaired and low impaired speech. Furthermore, there exists a correlation between some speaker's voice features and their optimal parameters.


Assuntos
Disartria , Percepção da Fala , Humanos , Fala , Distúrbios da Fala , Interface para o Reconhecimento da Fala
11.
J Neural Eng ; 18(5)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547740

RESUMO

Objective.The emotional response to olfactory stimuli implies the activation of a complex cascade of events triggered by structures lying in the limbic system. However, little is known about how this activation is projected up to cerebral cortex and how different cortical areas dynamically interact each other.Approach.In this study, we acquired EEG from human participants performing a passive odor-perception task with odorants conveying positive, neutral and negative valence. A novel methodological pipeline integrating global field power (GFP), independent component analysis (ICA), dipole source localization was applied to estimate effective connectivity in the challenging scenario of single-trial low-synchronized stimulation.Main results.We identified the brain network and the neural paths, elicited at different frequency bands, i.e.θ(4-7Hz),α(8-12Hz)andß(13-30Hz), involved in odor valence processing. This brain network includes the orbitofrontal cortex (OFC), the cingulate gyrus (CgG), the superior temporal gyrus (STG), the posterior cingulate cortex/precuneus (PCC/PCu) and the parahippocampal gyrus (PHG). It was analyzed using a time-varying multivariate autoregressive model to resolve time-frequency causal interactions. Specifically, the OFC acts as the main node for odor perception and evaluation of pleasant and unpleasant stimuli, whereas no specific path was observed for a neutral stimulus.Significance.The results introduce new evidences on the role of the OFC during hedonic perception and underpin its specificity during the odor valence assessment. Our findings suggest that, after the odor onset different, bidirectional interactions occur between the OFC and other brain regions associated with emotion recognition/categorization and memory according to the stimulus valence. This outcome unveils how the hedonic olfactory network dynamically changes based on odor valence.


Assuntos
Percepção Olfatória , Encéfalo , Córtex Cerebral , Humanos , Imageamento por Ressonância Magnética , Olfato
12.
J Neurosci Methods ; 362: 109317, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34380051

RESUMO

BACKGROUND: Disentangling physiological noise and signal of interest is a major issue when evaluating BOLD-signal changes in response to breath holding. Currently-adopted approaches for retrospective noise correction are general-purpose, and have non-negligible effects in studies on hypercapnic challenges. NEW METHOD: We provide a novel approach to the analysis of specific and non-specific BOLD-signal changes related to end-tidal CO2 (PETCO2) in breath-hold fMRI studies. Multiple-order nonlinear predictors for PETCO2 model a region-dependent nonlinear input-output relationship hypothesized in literature and possibly playing a crucial role in disentangling noise. We explore Retrospective Image-based Correction (RETROICOR) effects on the estimated BOLD response, applying our analysis both with and without RETROICOR and analyzing the linear and non-linear correlation between PETCO2 and RETROICOR regressors. RESULTS: The RETROICOR model of noise related to respiratory activity correlated with PETCO2 both linearly and non-linearly. The correction affected the shape of the estimated BOLD response to hypercapnia but allowed to discard spurious activity in ventricles and white matter. Activation clusters were best detected using non-linear components in the BOLD response model. COMPARISON WITH EXISTING METHOD: We evaluated the side-effects of standard physiological noise correction procedure, tailoring our analysis on challenging understudied brainstem and subcortical regions. Our novel approach allowed to characterize delays and non-linearities in BOLD response. CONCLUSIONS: RETROICOR successfully avoided false positives, still broadly affecting the estimated non-linear BOLD responses. Non-linearities in the model better explained CO2-related BOLD signal fluctuations. The necessity to modify the standard procedure for physiological-noise correction in breath-hold studies was addressed, stating its crucial importance.


Assuntos
Dióxido de Carbono , Substância Branca , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Tronco Encefálico , Suspensão da Respiração , Imageamento por Ressonância Magnética , Estudos Retrospectivos
13.
Transl Psychiatry ; 11(1): 415, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341338

RESUMO

There is a lack of consensus on the diagnostic thresholds that could improve the detection accuracy of bipolar mixed episodes in clinical settings. Some studies have shown that voice features could be reliable biomarkers of manic and depressive episodes compared to euthymic states, but none thus far have investigated whether they could aid the distinction between mixed and non-mixed acute bipolar episodes. Here we investigated whether vocal features acquired via verbal fluency tasks could accurately classify mixed states in bipolar disorder using machine learning methods. Fifty-six patients with bipolar disorder were recruited during an acute episode (19 hypomanic, 8 mixed hypomanic, 17 with mixed depression, 12 with depression). Nine different trials belonging to four conditions of verbal fluency tasks-letter, semantic, free word generation, and associational fluency-were administered. Spectral and prosodic features in three conditions were selected for the classification algorithm. Using the leave-one-subject-out (LOSO) strategy to train the classifier, we calculated the accuracy rate, the F1 score, and the Matthews correlation coefficient (MCC). For depression versus mixed depression, the accuracy and F1 scores were high, i.e., respectively 0.83 and 0.86, and the MCC was of 0.64. For hypomania versus mixed hypomania, accuracy and F1 scores were also high, i.e., 0.86 and 0.75, respectively, and the MCC was of 0.57. Given the high rates of correctly classified subjects, vocal features quickly acquired via verbal fluency tasks seem to be reliable biomarkers that could be easily implemented in clinical settings to improve diagnostic accuracy.


Assuntos
Transtorno Bipolar , Transtorno Bipolar/diagnóstico , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-33918411

RESUMO

Surgeons are workers that are particularly prone to the development of musculoskeletal disorders. Recent advances in surgical interventions, such as laparoscopic procedures, have caused a worsening of the scenario, given the harmful static postures that have to be kept for long periods. In this paper, we present a sensor-based platform specifically aimed at monitoring the posture during actual surgical operations. The proposed system adopts a limited number of Inertial Measurement Units (IMUs) to obtain information about spine and neck angles across time. Such a system merges the reliability of sensor-based approaches and the validity of state-of-the-art scoring procedure, such as RULA. Specifically, three IMUs are used to estimate the flexion, lateral bending, and twisting angles of spine and neck. An ergonomic risk index is thus estimated in a time varying fashion borrowing relevant features from the RULA scoring system. The detailed functioning of the proposed systems is introduced, and the assessment results related to a real surgical procedure, consisting of a laparoscopy and mini-laparotomy sections, are shown and discussed. In the exemplary case study introduced, the surgeon kept a high score, indicating the need for an intervention on the working procedures, for a large time fraction. The system allows separately analyzing the contribution of spine and neck, also specifying the angle configuration. It is shown how the proposed approach can provide further information, as related to dynamical analysis, which could be used to enlarge the features taken into account by currently available approaches for ergonomic risk assessment. The proposed system could be adopted both for training purposes, as well as for alerting surgeons during actual surgical operations.


Assuntos
Doenças Musculoesqueléticas , Doenças Profissionais , Cirurgiões , Dispositivos Eletrônicos Vestíveis , Ergonomia , Humanos , Doenças Musculoesqueléticas/prevenção & controle , Doenças Profissionais/prevenção & controle , Postura , Reprodutibilidade dos Testes
15.
IEEE Trans Biomed Eng ; 68(10): 3019-3028, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33617448

RESUMO

OBJECTIVE: Most of the bodily functions are regulated by multiple interactions between the parasympathetic (PNS) and sympathetic (SNS) nervous system. In this study, we propose a novel framework to quantify the causal flow of information between PNS and SNS through the analysis of heart rate variability (HRV) and electrodermal activity (EDA) signals. METHODS: Our method is based on a time-varying (TV) multivariate autoregressive model of EDA and HRV time-series and incorporates physiologically inspired assumptions by estimating the Directed Coherence in a specific frequency range. The statistical significance of the observed interactions is assessed by a bootstrap procedure purposely developed to infer causalities in the presence of both TV model coefficients and TV model residuals (i.e., heteroskedasticity). We tested our method on two different experiments designed to trigger a sympathetic response, i.e., a hand-grip task (HG) and a mental-computation task (MC). RESULTS: Our results show a parasympathetic driven interaction in the resting state, which is consistent across different studies. The onset of the stressful stimulation triggers a cascade of events characterized by the presence or absence of the PNS-SNS interaction and changes in the directionality. Despite similarities between the results related to the two tasks, we reveal differences in the dynamics of the PNS-SNS interaction, which might reflect different regulatory mechanisms associated with different stressors. CONCLUSION: We estimate causal coupling between PNS and SNS through MVAR modeling of EDA and HRV time-series. SIGNIFICANCE: Our results suggest promising future applicability to investigate more complex contexts such as affective and pathological scenarios.


Assuntos
Resposta Galvânica da Pele , Sistema Nervoso Simpático , Causalidade , Frequência Cardíaca , Humanos
16.
J Appl Physiol (1985) ; 130(2): 298-307, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300854

RESUMO

We demonstrated that changes in CO2 values cause oscillations in the cortical activity in δ-and α-bands. The analysis of the regional field power (RFP) showed evidence that different cortical areas respond with different time delays to CO2 challenges. An opposite behavior was found for the end-tidal O2. We suppose that the different cortical time delays likely expresse specific ascending pathways to the cortex, generated by chemoreceptor nuclei in the brain stem. Although the brain stem is in charge of the automatic control of ventilation, the cortex is involved in the voluntary control of breathing but also receives inputs from the brain stem, which influences the perception of breathing, the arousal state and sleep architecture in conditions of hypoxia/hypercapnia. We evaluated in 11 healthy subjects the effects of breath hold (BH; 30 s of apneas and 30 s of normal breathing) and BH-related CO2/O2 changes on electroencephalogram (EEG) global field power (GFP) and RFP in nine different areas (3 rostrocaudal sections: anterior, central, and posterior; and 3 sagittal sections: left, middle, and right) in the δ- and α-bands by cross correlation analysis. No significant differences were observed in GFP or RFP when comparing free breathing (FB) with the BH task. Within the BH task, the shift from apnea to normal ventilation was accompanied by an increase in the δ-power and a decrease in the α-power. The end-tidal pressure of CO2 ([Formula: see text]) was positively correlated with the δ-band and negatively with the α- band with a positive time shift, whereas an opposite behavior was found for the end-tidal pressure of O2 ([Formula: see text]). Notably, the time shift between [Formula: see text] / [Formula: see text] signals and cortical activity at RFP was heterogenous and seemed to follow a hierarchical activation, with the δ-band responding earlier than the α-band. Overall, these findings suggest that the effect of BH on the cortex may follow specific ascending pathways from the brain stem and be related to chemoreflex stimulation.NEW & NOTEWORTHY We demonstrated that the end tidal CO2 oscillation causes oscillations of delta and alpha bands. The analysis of the regional field power showed that different cortical areas respond with different time delays to CO2 challenges. An opposite behavior was found for the end-tidal O2. We can suppose that the different cortical time delay response likely expresses specific ascending pathways to the cortex generated by chemoreceptor nuclei in the brainstem.


Assuntos
Suspensão da Respiração , Dióxido de Carbono , Eletroencefalografia , Voluntários Saudáveis , Humanos , Hipercapnia , Respiração
17.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498403

RESUMO

The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions (p < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics.


Assuntos
Dedos , Frequência Cardíaca , Fotopletismografia , Punho , Adulto , Eletrocardiografia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
18.
Front Neuroinform ; 14: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256332

RESUMO

Accurately digitizing the brain at the micro-scale is crucial for investigating brain structure-function relationships and documenting morphological alterations due to neuropathies. Here we present a new Smart Region Growing algorithm (SmRG) for the segmentation of single neurons in their intricate 3D arrangement within the brain. Its Region Growing procedure is based on a homogeneity predicate determined by describing the pixel intensity statistics of confocal acquisitions with a mixture model, enabling an accurate reconstruction of complex 3D cellular structures from high-resolution images of neural tissue. The algorithm's outcome is a 3D matrix of logical values identifying the voxels belonging to the segmented structure, thus providing additional useful volumetric information on neurons. To highlight the algorithm's full potential, we compared its performance in terms of accuracy, reproducibility, precision and robustness of 3D neuron reconstructions based on microscopic data from different brain locations and imaging protocols against both manual and state-of-the-art reconstruction tools.

19.
IEEE Trans Neural Syst Rehabil Eng ; 28(5): 1216-1225, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32191895

RESUMO

The characterization of brain cortical activity in heart-failure patients affected by Cheyne-Stokes Respiration might provide relevant information about the mechanism underlying this pathology. Central autonomic network is gaining increasing attention for its role in the regulation of breathing and cardiac functions. In this scenario, evaluating changes in cortical connectivity associated with Cheyne-Stokes Respiration may be of interest in the study of specific brain-activity related to such disease. Nonetheless, the inter subject variability, the temporal dynamics of Central-Apnea/Hyperpnea cycles and the limitations of clinical setups lead to different methodological challenges. To this aim, we present a framework for the assessment of cortico-cortical interactions from Electroencephalographic signals acquired using low-density caps and block-design paradigms, arising from endogenous triggers. The framework combines ICA-decomposition, unsupervised clustering, MVAR modelling and a permutation-bootstrap strategy for evaluating significant connectivity differences between conditions. A common network, lateralized towards the left hemisphere, was depicted across 8 patients exhibiting Cheyne-Stokes Respiration patterns during acquisitions. Significant differences in connectivity at the group level were observed based on patients' ventilatory condition. Interactions were significantly higher during hyperpnea periods with respect to central apneas and occurred mainly in the delta band. Opposite-sign differences were observed for higher frequencies (i.e. beta, low-gamma).


Assuntos
Insuficiência Cardíaca , Apneia do Sono Tipo Central , Encéfalo/fisiologia , Respiração de Cheyne-Stokes , Eletroencefalografia , Humanos , Respiração
20.
Behav Brain Res ; 379: 112395, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31786275

RESUMO

OBJECTIVE: Impulsivity is a key, trait-like feature of the decision-making process. As personality traits are stable over time, we hypothesized that resting-state (RS) neural activity would predict individual impulsivity. METHODS: Thirty-five healthy individuals underwent fMRI scan during RS and subsequently performed the Balloon Analogue Risk Task (BART). In BART, impulsivity was inversely correlated to monetary earnings. A group-level whole-brain regression assessed the relationship between earnings at BART and RS evaluated by the Hurst Exponent, regional homogeneity; low frequency oscillation (LFO), (including the Amplitude of Low Frequency Fluctuations - ALFF- and the fractional Amplitude of Low Frequency Fluctuations -fALFF) and the Default Mode Network (DMN) functional connectivity. RESULTS: ALFF significantly correlates with total earnings in the ventral part of the ACC/MPFC (FWE corrected p < 0.05 (uncorrected p value <0.0005; cluster size: ≥10 voxels), while H significantly correlates with total earnings in the anterior insula and the part opercularis of the inferior frontal gyrus. CONCLUSIONS: These results suggest that impulsivity and ability to change strategies according to external cues are trait characteristics shaped in the RS's functional architecture that can be detected also when individuals are not engaged in decision-making tasks.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Tomada de Decisões/fisiologia , Rede de Modo Padrão/fisiologia , Comportamento Impulsivo/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Recompensa , Adulto , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...