Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 287(11): 2367-2385, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31738467

RESUMO

The chemokine CCR5 receptor is target of maraviroc, a negative allosteric modulator of CCR5 that blocks the HIV protein gp120 from associating with the receptor, thereby inhibiting virus cellular entry. As noted with other G-protein-coupled receptor family members, the role of the lipid environment in CCR5 signaling remains obscure and very modestly investigated. Controversial literature on the impact of cholesterol (Chol) depletion in HIV infection and CCR5 signaling, including the hypothesis that Chol depletion could inhibit HIV infection, lead us to focus on the understanding of Chol impact in the first stages of receptor activation. To address this aim, the approach chosen was to employ reconstituted model lipid systems of controlled lipid composition containing CCR5 from two distinct expression systems: Pichia pastoris and cell-free expression. The characterization of receptor/ligand interaction in terms of total binding or competition binding assays was independently performed by plasmon waveguide resonance and fluorescence anisotropy, respectively. Maraviroc, a potent receptor antagonist, was the ligand investigated. Additionally, coarse-grained molecular dynamics simulation was employed to investigate Chol impact in the receptor-conformational flexibility and dynamics. Results obtained with receptor produced by different expression systems and using different biophysical approaches clearly demonstrate a considerable impact of Chol in the binding affinity of maraviroc to the receptor and receptor-conformational dynamics. Chol considerably decreases maraviroc binding affinity to the CCR5 receptor. The mechanisms by which this effect occurs seem to involve the adoption of distinct receptor-conformational states with restrained structural dynamics and helical motions in the presence of Chol.


Assuntos
Colesterol/metabolismo , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Receptores CCR5/genética , Colesterol/genética , HIV/patogenicidade , Infecções por HIV/virologia , Humanos , Ligantes , Maraviroc/farmacologia , Receptores Virais/genética , Saccharomycetales/genética , Ressonância de Plasmônio de Superfície , Internalização do Vírus/efeitos dos fármacos
2.
Bioconjug Chem ; 28(11): 2887-2894, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29077399

RESUMO

The fast, efficient, and functional group tolerant last-step radiolabeling of bioconjugates is crucial for positron emission tomography (PET) applications. In this context, o-iodobenzyl alcohol based structures were identified as ideal tags for an easy Pd-catalyzed carbonylation after bioconjugation, and a moxestrol-conjugated precursor was chosen as the model compound for the further studies. Despite scale and time constraints, conditions developed with [12C]CO and [13C]CO were easily transferred to the 11C isotope, and the desired radioactive product was obtained in amounts up to 740 MBq with radiochemical purities higher than 99%. Radio-high-performance liquid chromatography analyses of rat blood samples demonstrated excellent in vivo stability within the time of the acquisition. MicroPET-magnetic resonance imaging showed excretion pathways similar to moxestrol, and molecular modeling was also performed to evaluate the potential ability of this conjugate to bind estrogen receptors α. Thus, being both synthetically and biologically suitable, this strategy clears the path to potential novel biotracers for preclinical PET imaging.


Assuntos
Álcool Benzílico/química , Monóxido de Carbono/química , Radioisótopos de Carbono/química , Etinilestradiol/análogos & derivados , Paládio/química , Tomografia por Emissão de Pósitrons , Animais , Álcool Benzílico/síntese química , Álcool Benzílico/metabolismo , Monóxido de Carbono/síntese química , Catálise , Receptor alfa de Estrogênio/metabolismo , Etinilestradiol/síntese química , Etinilestradiol/química , Etinilestradiol/metabolismo , Feminino , Halogenação , Marcação por Isótopo/métodos , Imageamento por Ressonância Magnética , Simulação de Acoplamento Molecular , Tomografia por Emissão de Pósitrons/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA