Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav ; 13(11): e3252, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37700567

RESUMO

INTRODUCTION: Chronic pain associates with various sleep problems. Patients with complex regional pain syndrome (CRPS) often report impaired sleep, but objective measurements of sleep in CRPS patients are scarce. Neuromodulation with repetitive transcranial magnetic stimulation (rTMS) can alleviate pain and improve sleep. Secondary somatosensory cortex (S2) is a possible rTMS target for the treatment of chronic pain, but the effect of S2-targeted rTMS on sleep is unknown. METHODS: This randomized, sham-controlled trial assessed the effect of S2-targeted rTMS on sleep in patients with CRPS. Patients (n = 31) received either S2-targeted rTMS (10 Hz) or sham stimulation for 3 weeks. The effect of treatment on sleep was assessed with validated questionnaires, with a sleep and pain diary, and with a consumer-grade sleep tracker, the Oura ring. In addition to an ordinary univariate analysis of the results, we conducted multivariate testing of the Oura data using linear discriminant analysis (LDA). RESULTS: S2-targeted rTMS decreased sleep restlessness that significantly differed between the rTMS and sham stimulation patient groups (p = .028). In the multivariate analysis of the Oura data, LDA classification accuracy to separate the rTMS and sham groups exceeded 95% confidence level in four out of the seven tested models. In the subjective evaluation of sleep, the effect of rTMS and sham did not differ. CONCLUSION: S2-targeted rTMS influenced sleep in patients with CRPS. Improved sleep may enhance CRPS symptom alleviation and be of clinical importance. A univariate analysis could separate the rTMS and sham treatments. The multivariate analysis revealed that including multiple sleep-related parameters can be beneficial when analyzing rTMS effects on sleep. As sleep is related both to pain and quality of life, and sleep rTMS can be directly affected by rTMS, objective monitoring of sleep in various future rTMS trials could be fruitful.


Assuntos
Dor Crônica , Síndromes da Dor Regional Complexa , Humanos , Estimulação Magnética Transcraniana/métodos , Dor Crônica/terapia , Córtex Somatossensorial , Qualidade de Vida , Resultado do Tratamento
2.
Neuromodulation ; 25(4): 538-548, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35670063

RESUMO

OBJECTIVES: Central poststroke pain (CPSP), a neuropathic pain condition, is difficult to treat. Repetitive transcranial magnetic stimulation (rTMS) targeted to the primary motor cortex (M1) can alleviate the condition, but not all patients respond. We aimed to assess a promising alternative rTMS target, the secondary somatosensory cortex (S2), for CPSP treatment. MATERIALS AND METHODS: This prospective, randomized, double-blind, sham-controlled three-arm crossover trial assessed navigated rTMS (nrTMS) targeted to M1 and S2 (10 sessions, 5050 pulses per session at 10 Hz). Participants were evaluated for pain, depression, anxiety, health-related quality of life, upper limb function, and three plasticity-related gene polymorphisms including Dopamine D2 Receptor (DRD2). We monitored pain intensity and interference before and during stimulations and at one month. A conditioned pain modulation test was performed using the cold pressor test. This assessed the efficacy of the descending inhibitory system, which may transmit TMS effects in pain control. RESULTS: We prescreened 73 patients, screened 29, and included 21, of whom 17 completed the trial. NrTMS targeted to S2 resulted in long-term (from baseline to one-month follow-up) pain intensity reduction of ≥30% in 18% (3/17) of participants. All stimulations showed a short-term effect on pain (17-20% pain relief), with no difference between M1, S2, or sham stimulations, indicating a strong placebo effect. Only nrTMS targeted to S2 resulted in a significant long-term pain intensity reduction (15% pain relief). The cold pressor test reduced CPSP pain intensity significantly (p = 0.001), indicating functioning descending inhibitory controls. The homozygous DRD2 T/T genotype is associated with the M1 stimulation response. CONCLUSIONS: S2 is a promising nrTMS target in the treatment of CPSP. The DRD2 T/T genotype might be a biomarker for M1 nrTMS response, but this needs confirmation from a larger study.


Assuntos
Neuralgia , Estimulação Magnética Transcraniana , Método Duplo-Cego , Humanos , Neuralgia/terapia , Projetos Piloto , Estudos Prospectivos , Qualidade de Vida , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
3.
Spinal Cord Ser Cases ; 8(1): 38, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379772

RESUMO

STUDY DESIGN: A prospective interventional case series. OBJECTIVES: To explore changes in the modulation of cortical sensorimotor oscillations after long-term paired associative stimulation (PAS) in participants with spinal cord injury (SCI). SETTING: BioMag Laboratory, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. METHODS: Five patients with chronic incomplete SCI received unilateral spinal PAS to upper limb for 16-22 days. Changes in the modulation of sensorimotor oscillations in response to tactile stimulus and active and imaginary hand movements were assessed with magnetoencephalography recorded before and after the intervention. RESULTS: PAS restored the modulation of sensorimotor oscillations in response to active hand movement in four patients, whereas the modulation following tactile stimulation remained unaltered. The observed change was larger in the hemisphere that received PAS and preceded the clinical effect of the intervention. CONCLUSIONS: Long-term spinal PAS treatment, which enhances the motor functions of SCI patients, also restores the modulation of cortical sensorimotor oscillations.


Assuntos
Potencial Evocado Motor , Traumatismos da Medula Espinal , Potencial Evocado Motor/fisiologia , Mãos , Humanos , Modalidades de Fisioterapia , Estudos Prospectivos , Traumatismos da Medula Espinal/terapia
4.
Sci Rep ; 12(1): 4220, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273346

RESUMO

In needle electromyography, there are two spontaneous waveforms, miniature end plate potentials and "end plate spikes", appearing usually together. Miniature end plate potentials are local, non-propagating postsynaptic waves, caused by spontaneous exocytosis of acetylcholine in the neuromuscular junction. The prevailing hypothesis states that "end plate spikes" are propagated postsynaptic action potentials of muscle fibers, caused by presynaptic irritation of the motor nerve or nerve terminal. Using several small concentric needle electrodes in parallel with the muscle fibers, most "end plate spikes" are strictly local or propagating for 2-4 mm. At the end plate zone, there are miniature end plate potentials without "end plate spikes". Local "end plate spikes" are junctional potentials of intrafusal gamma neuromuscular junctions of the nuclear bag fibers, and propagated "end plate spikes" are potentials of nuclear chain muscle fibers of muscle spindles. Miniature end plate potentials without "end plate spikes" at the end plate zone derive from alpha neuromuscular junctions. These findings contrast with the prevailing hypothesis. The history of observations and different hypotheses of the origin of end plate spikes are described.


Assuntos
Placa Motora , Fusos Musculares , Potenciais de Ação , Eletromiografia , Placa Motora/fisiologia , Fusos Musculares/fisiologia , Junção Neuromuscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...