Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Endocr Connect ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657653

RESUMO

In critically ill adults, high plasma cortisol in face of low ACTH coincides with high pro-opiomelanocortin (POMC) levels. Glucocorticoids further lower ACTH without affecting POMC. We hypothesized that in pediatric cardiac surgery-induced critical illness, plasma POMC is elevated, plasma ACTH transiently rises intraoperatively but becomes suppressed post-operatively, and glucocorticoid administration amplifies this phenotype. From 53 patients (0-36 months), plasma was obtained pre-operatively, intraoperatively and on post-operative day 1 and 2. Plasma was also collected from 24 healthy children. In patients, POMC was supra-normal pre-operatively (p<0.0001) but no longer thereafter (p<0.05). ACTH was never high in patients. While in glucocorticoid-naive patients ACTH became suppressed by post-operative day 1 (p<0.0001), glucocorticoid-treated patients had suppressed ACTH already intraoperatively (p≤0.0001). Pre-operatively high POMC, not accompanied by increased plasma ACTH, suggests a centrally-activated HPA-axis with reduced pituitary processing of POMC into ACTH. Increasing systemic glucocorticoid availability with glucocorticoid treatment accelerated the suppression of plasma ACTH.

2.
Comput Methods Programs Biomed ; 250: 108166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614026

RESUMO

BACKGROUND AND OBJECTIVE: Critically ill children may suffer from impaired neurocognitive functions years after ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed sequence of tests. Undergoing all tests is, however, arduous for former pediatric ICU patients, resulting in interrupted evaluations where several neurocognitive deficiencies remain undetected. As a solution, we propose using machine learning to predict the optimal order of tests for each child, reducing the number of tests required to identify the most severe neurocognitive deficiencies. METHODS: We have compared the current clinical approach against several machine learning methods, mainly multi-target regression and label ranking methods. We have also proposed a new method that builds several multi-target predictive models and combines the outputs into a ranking that prioritizes the worse neurocognitive outcomes. We used data available at discharge, from children who participated in the PEPaNIC-RCT trial (ClinicalTrials.gov-NCT01536275), as well as data from a 2-year follow-up study. The institutional review boards at each participating site have also approved this follow-up study (ML8052; NL49708.078; Pro00038098). RESULTS: Our proposed method managed to outperform other machine learning methods and also the current clinical practice. Precisely, our method reaches approximately 80% precision when considering top-4 outcomes, in comparison to 65% and 78% obtained by the current clinical practice and the state-of-the-art method in label ranking, respectively. CONCLUSIONS: Our experiments demonstrated that machine learning can be competitive or even superior to the current testing order employed in clinical practice, suggesting that our model can be used to severely reduce the number of tests necessary for each child. Moreover, the results indicate that possible long-term adverse outcomes are already predictable as early as at ICU discharge. Thus, our work can be seen as the first step to allow more personalized follow-up after ICU discharge leading to preventive care rather than curative.


Assuntos
Unidades de Terapia Intensiva Pediátrica , Aprendizado de Máquina , Humanos , Criança , Masculino , Feminino , Pré-Escolar , Estado Terminal , Seguimentos , Alta do Paciente
3.
Clin Epigenetics ; 16(1): 31, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395991

RESUMO

BACKGROUND: Critically ill children suffer from impaired physical/neurocognitive development 2 years later. Glucocorticoid treatment alters DNA methylation within the hypothalamus-pituitary-adrenal (HPA) axis which may impair normal brain development, cognition and behaviour. We tested the hypothesis that paediatric-intensive-care-unit (PICU) patients, sex- and age-dependently, show long-term abnormal DNA methylation within the HPA-axis layers, possibly aggravated by glucocorticoid treatment in the PICU, which may contribute to the long-term developmental impairments. RESULTS: In a pre-planned secondary analysis of the multicentre PEPaNIC-RCT and its 2-year follow-up, we identified differentially methylated positions and differentially methylated regions within HPA-axis genes in buccal mucosa DNA from 818 former PICU patients 2 years after PICU admission (n = 608 no glucocorticoid treatment; n = 210 glucocorticoid treatment) versus 392 healthy children and assessed interaction with sex and age, role of glucocorticoid treatment in the PICU and associations with long-term developmental impairments. Adjusting for technical variation and baseline risk factors and correcting for multiple testing (false discovery rate < 0.05), former PICU patients showed abnormal DNA methylation of 26 CpG sites (within CRHR1, POMC, MC2R, NR3C1, FKBP5, HSD11B1, SRD5A1, AKR1D1, DUSP1, TSC22D3 and TNF) and three DNA regions (within AVP, TSC22D3 and TNF) that were mostly hypomethylated. These abnormalities were sex-independent and only partially age-dependent. Abnormal methylation of three CpG sites within FKBP5 and one CpG site within SRD5A1 and AKR1D1 was partly attributable to glucocorticoid treatment during PICU stay. Finally, abnormal methylation within FKBP5 and AKR1D1 was most robustly associated with long-term impaired development. CONCLUSIONS: Two years after critical illness in children, abnormal methylation within HPA-axis genes was present, predominantly within FKBP5 and AKR1D1, partly attributable to glucocorticoid treatment in the PICU, and explaining part of the long-term developmental impairments. These data call for caution regarding liberal glucocorticoid use in the PICU.


Assuntos
Estado Terminal , Metilação de DNA , Criança , Humanos , Estado Terminal/terapia , Glucocorticoides/efeitos adversos , Receptores de Glucocorticoides/genética , DNA
4.
Am J Respir Crit Care Med ; 209(5): 497-506, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991900

RESUMO

This article tells the story of our long search for the answer to one question: Is stress hyperglycemia in critically ill patients adaptive or maladaptive? Our earlier work had suggested the lack of hepatic insulin effect and hyperglycemia as jointly predicting poor outcome. Therefore, we hypothesized that insulin infusion to reach normoglycemia, tight glucose control, improves outcome. In three randomized controlled trials (RCTs), we found morbidity and mortality benefit with tight glucose control. Moving from the bed to the bench, we attributed benefits to the prevention of glucose toxicity in cells taking up glucose in an insulin-independent, glucose concentration gradient-dependent manner, counteracted rather than synergized by insulin. Several subsequent RCTs did not confirm benefit, and the large Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation, or "NICE-SUGAR," trial found increased mortality with tight glucose control associated with severe hypoglycemia. Our subsequent clinical and mechanistic research revealed that early use of parenteral nutrition, the context of our initial RCTs, had been a confounder. Early parenteral nutrition (early-PN) aggravated hyperglycemia, suppressed vital cell damage removal, and hampered recovery. Therefore, in our next and largest "TGC-fast" RCT, we retested our hypothesis, without the use of early-PN and with a computer algorithm for tight glucose control that avoided severe hypoglycemia. In this trial, tight glucose control prevented kidney and liver damage, though with much smaller effect sizes than in our initial RCTs without affecting mortality. Our quest ends with the strong recommendation to omit early-PN for patients in the ICU, as this reduces need of blood glucose control and allows cellular housekeeping systems to play evolutionary selected roles in the recovery process. Once again, less is more in critical care.


Assuntos
Hiperglicemia , Hipoglicemia , Humanos , Controle Glicêmico , Glicemia , Insulina/uso terapêutico , Glucose , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Unidades de Terapia Intensiva
5.
J Pediatr Gastroenterol Nutr ; 77(6): 811-818, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728917

RESUMO

OBJECTIVES: Predicting the patients' tolerance to enteral nutrition (EN) would help clinicians optimize individual nutritional intake. This study investigated the course of several gastrointestinal (GI) biomarkers and their association with EN advancement (ENA) longitudinally during pediatric intensive care unit (PICU) admission. METHODS: This is a secondary analysis of the Early versus Late Parenteral Nutrition in the Pediatric Intensive Care Unit randomized controlled trial. EN was started early and increased gradually. The cholecystokinin (CCK), leptin, glucagon, intestinal fatty acid-binding protein 2 (I-FABP2), and citrulline plasma concentrations were measured upon PICU admission, day 3 and day 5. ENA was defined as kcal EN provided as % of predicted resting energy expenditure. The course of the biomarkers and ENA was examined in patients with samples on all time points using Friedman and Wilcoxon signed-rank tests. The association of ENA with the biomarkers was examined using a 2-part mixed-effects model with data of the complete population, adjusted for possible confounders. RESULTS: For 172 patients, median age 8.6 years (first quartile; third quartile: 4.2; 13.4), samples were available, of which 55 had samples on all time points. The median ENA was 0 (0; 0) on admission, 14.5 (0.0; 43.8) on day 3, and 28.0 (7.6; 94.8) on day 5. During PICU stay, CCK and I-FABP2 concentrations decreased significantly, whereas glucagon concentrations increased significantly, and leptin and citrulline remained stable. None of the biomarkers was longitudinally associated with ENA. CONCLUSIONS: Based on the current evidence, CCK, leptin, glucagon, I-FABP2, and citrulline appear to have no added value in predicting ENA in the first 5 days of pediatric critical illness.


Assuntos
Estado Terminal , Leptina , Criança , Humanos , Estado Terminal/terapia , Citrulina , Glucagon , Unidades de Terapia Intensiva Pediátrica , Biomarcadores
6.
Skelet Muscle ; 13(1): 12, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37537627

RESUMO

BACKGROUND: Critical illness is hallmarked by severe stress and organ damage. Fibroblast growth factor 21 (FGF21) has been shown to rise during critical illness. FGF21 is a pleiotropic hormone that mediates adaptive responses to tissue injury and repair in various chronic pathological conditions. Animal studies have suggested that the critical illness-induced rise in FGF21 may to a certain extent protect against acute lung, liver, kidney and brain injury. However, FGF21 has also been shown to mediate fasting-induced loss of muscle mass and force. Such loss of muscle mass and force is a frequent problem of critically ill patients, associated with adverse outcome. In the present study, we therefore investigated whether the critical illness-induced acute rise in FGF21 is muscle-protective or rather contributes to the pathophysiology of critical illness-induced muscle weakness. METHODS: In a catheterised mouse model of critical illness induced by surgery and sepsis, we first assessed the effects of genetic FGF21 inactivation, and hence the inability to acutely increase FGF21, on survival, body weight, muscle wasting and weakness, and markers of muscle cellular stress and dysfunction in acute (30 h) and prolonged (5 days) critical illness. Secondly, we assessed whether any effects were mirrored by supplementing an FGF21 analogue (LY2405319) in prolonged critical illness. RESULTS: FGF21 was not required for survival of sepsis. Genetic FGF21 inactivation aggravated the critical illness-induced body weight loss (p = 0.0003), loss of muscle force (p = 0.03) and shift to smaller myofibers. This was accompanied by a more pronounced rise in markers of endoplasmic reticulum stress in muscle, without effects on impairments in mitochondrial respiratory chain enzyme activities or autophagy activation. Supplementing critically ill mice with LY2405319 did not affect survival, muscle force or weight, or markers of muscle cellular stress/dysfunction. CONCLUSIONS: Endogenous FGF21 is not required for sepsis survival, but may partially protect muscle force and may reduce cellular stress in muscle. Exogenous FGF21 supplementation failed to improve muscle force or cellular stress, not supporting the clinical applicability of FGF21 supplementation to protect against muscle weakness during critical illness.


Assuntos
Estado Terminal , Sepse , Animais , Camundongos , Estresse do Retículo Endoplasmático , Debilidade Muscular/etiologia , Debilidade Muscular/metabolismo , Modelos Animais de Doenças , Sepse/complicações , Sepse/metabolismo , Sepse/patologia
7.
Clin Epigenetics ; 15(1): 116, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468957

RESUMO

BACKGROUND: Former critically ill children show an epigenetic age deceleration 2 years after paediatric intensive care unit (PICU) admission as compared with normally developing healthy children, with stunted growth in height 2 years further in time as physical correlate. This was particularly pronounced in children who were 6 years or older at the time of critical illness. As this age roughly corresponds to the onset of adrenarche and further pubertal development, a relation with altered activation of endocrine pathways is plausible. We hypothesised that children who have been admitted to the PICU, sex- and age-dependently show long-term abnormal DNA methylation within genes involved in steroid hormone synthesis or steroid sulphation/desulphation, possibly aggravated by in-PICU glucocorticoid treatment, which may contribute to stunted growth in height further in time after critical illness. RESULTS: In this preplanned secondary analysis of the multicentre PEPaNIC-RCT and its follow-up, we compared the methylation status of genes involved in the biosynthesis of steroid hormones (aldosterone, cortisol and sex hormones) and steroid sulphation/desulphation in buccal mucosa DNA (Infinium HumanMethylation EPIC BeadChip) from former PICU patients at 2-year follow-up (n = 818) and healthy children with comparable sex and age (n = 392). Adjusting for technical variation and baseline risk factors and corrected for multiple testing (false discovery rate < 0.05), former PICU patients showed abnormal DNA methylation of 23 CpG sites (within CYP11A1, POR, CYB5A, HSD17B1, HSD17B2, HSD17B3, HSD17B6, HSD17B10, HSD17B12, CYP19A1, CYP21A2, and CYP11B2) and 4 DNA regions (within HSD17B2, HSD17B8, and HSD17B10) that were mostly hypomethylated. These abnormalities were partially sex- (1 CpG site) or age-dependent (7 CpG sites) and affected by glucocorticoid treatment (3 CpG sites). Finally, multivariable linear models identified robust associations of abnormal methylation of steroidogenic genes with shorter height further in time, at 4-year follow-up. CONCLUSIONS: Children who have been critically ill show abnormal methylation within steroidogenic genes 2 years after PICU admission, which explained part of the stunted growth in height at 4-year follow-up. The abnormalities in DNA methylation may point to a long-term disturbance in the balance between active sex steroids and mineralocorticoids/glucocorticoids after paediatric critical illness, which requires further investigation.


Assuntos
Estado Terminal , Glucocorticoides , Criança , Humanos , Pré-Escolar , Estado Terminal/terapia , Metilação de DNA , Fatores de Tempo , Transtornos do Crescimento , DNA , Esteroide 21-Hidroxilase
8.
Curr Opin Crit Care ; 29(4): 306-314, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306474

RESUMO

PURPOSE OF REVIEW: Critical illness imposes a severe insult on the body, with various stressors triggering pronounced cell damage. This compromises cellular function, leading to a high risk of multiple organ failure. Autophagy can remove damaged molecules and organelles but appears insufficiently activated during critical illness. This review discusses insight into the role of autophagy in critical illness and the involvement of artificial feeding in insufficient autophagy activation in critical illness. RECENT FINDINGS: Animal studies manipulating autophagy have shown its protective effects against kidney, lung, liver, and intestinal injury after several critical insults. Autophagy activation also protected peripheral, respiratory, and cardiac muscle function, despite aggravated muscle atrophy. Its role in acute brain injury is more equivocal. Animal and patient studies showed that artificial feeding suppressed autophagy activation in critical illness, particularly with high protein/amino acid doses. Feeding-suppressed autophagy may explain short and long-term harm by early enhanced calorie/protein feeding in large randomized controlled trials. SUMMARY: Insufficient autophagy during critical illness is at least partly explained by feeding-induced suppression. This may explain why early enhanced nutrition failed to benefit critically ill patients or even induced harm. Safe, specific activation of autophagy avoiding prolonged starvation opens perspectives for improving outcomes of critical illness.


Assuntos
Autofagia , Estado Terminal , Animais , Humanos , Autofagia/fisiologia , Apoio Nutricional , Estado Nutricional , Fígado
9.
Crit Care ; 27(1): 251, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365667

RESUMO

BACKGROUND: Withholding parenteral nutrition (PN) until one week after PICU admission facilitated recovery from critical illness and protected against emotional and behavioral problems 4 years later. However, the intervention increased the risk of hypoglycemia, which may have counteracted part of the benefit. Previously, hypoglycemia occurring under tight glucose control in critically ill children receiving early PN did not associate with long-term harm. We investigated whether hypoglycemia in PICU differentially associates with outcome in the context of withholding early PN, and whether any potential association with outcome may depend on the applied glucose control protocol. METHODS: In this secondary analysis of the multicenter PEPaNIC RCT, we studied whether hypoglycemia in PICU associated with mortality (N = 1440) and 4-years neurodevelopmental outcome (N = 674) through univariable comparison and multivariable regression analyses adjusting for potential confounders. In patients with available blood samples (N = 556), multivariable models were additionally adjusted for baseline serum NSE and S100B concentrations as biomarkers of neuronal, respectively, astrocytic damage. To study whether an association of hypoglycemia with outcome may be affected by the nutritional strategy or center-specific glucose control protocol, we further adjusted the models for the interaction between hypoglycemia and the randomized nutritional strategy, respectively, treatment center. In sensitivity analyses, we studied whether any association with outcome was different in patients with iatrogenic or spontaneous/recurrent hypoglycemia. RESULTS: Hypoglycemia univariably associated with higher mortality in PICU, at 90 days and 4 years after randomization, but not when adjusted for risk factors. After 4 years, critically ill children with hypoglycemia scored significantly worse for certain parent/caregiver-reported executive functions (working memory, planning and organization, metacognition) than patients without hypoglycemia, also when adjusted for risk factors including baseline NSE and S100B. Further adjustment for the interaction of hypoglycemia with the randomized intervention or treatment center revealed a potential interaction, whereby tight glucose control and withholding early PN may be protective. Impaired executive functions were most pronounced in patients with spontaneous or recurrent hypoglycemia. CONCLUSION: Critically ill children exposed to hypoglycemia in PICU were at higher risk of impaired executive functions after 4 years, especially in cases of spontaneous/recurrent hypoglycemia.


Assuntos
Glicemia , Hipoglicemia , Criança , Humanos , Glicemia/análise , Controle Glicêmico , Estado Terminal/terapia , Unidades de Terapia Intensiva Pediátrica
10.
J Endocr Soc ; 7(3): bvad001, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36726836

RESUMO

Context: Muscle expresses and secretes several myokines that bring about benefits in distant organs. Objective: We investigated the impact of critical illness on muscular expression of irisin, kynurenine aminotransferases, and amylase; association with clinical outcome; and impact of interventions that attenuate muscle wasting/weakness. Methods: We studied critically ill patients who participated in 2 randomized controlled trials (EPaNIC/NESCI) and documented time profiles in critically ill mice. Included in the study were 174 intensive care unit (ICU) patients (day 8 ± 1) vs 19 matched controls, and 60 mice subjected to surgery/sepsis vs 60 pair-fed healthy mice. Interventions studied included 7-day neuromuscular electrical stimulation (NMES), and withholding parenteral nutrition (PN) in the first ICU week (late PN) vs early PN. The main outcome measures were FNDC5 (irisin- precursor), KYAT1, KYAT3, and amylase mRNA expression in skeletal muscle. Results: Critically ill patients showed 34% to 80% lower mRNA expression of FNDC5, KYAT1, and amylases than controls (P < .0001). Critically ill mice showed time-dependent reductions in all mRNAs compared with healthy mice (P ≤ .04). The lower FNDC5 expression in patients was independently associated with a higher ICU mortality (P = .015) and ICU-acquired weakness (P = .012), whereas the lower amylase expression in ICU survivors was independently associated with a longer ICU stay (P = .0060). Lower amylase expression was independently associated with a lower risk of death (P = .048), and lower KYAT1 expression with a lower risk of weakness (P = .022). NMES increased FNDC5 expression compared with unstimulated muscle (P = .016), and late PN patients had a higher KYAT1 expression than early PN patients (P = .022). Conclusion: Expression of the studied myokines was affected by critical illness and associated with clinical outcomes, with limited effects of interventions that attenuate muscle wasting or weakness.

11.
Curr Opin Crit Care ; 29(2): 114-122, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36794929

RESUMO

PURPOSE OF REVIEW: Many critically ill patients face physical, mental or neurocognitive impairments up to years later, the etiology remaining largely unexplained. Aberrant epigenetic changes have been linked to abnormal development and diseases resulting from adverse environmental exposures like major stress or inadequate nutrition. Theoretically, severe stress and artificial nutritional management of critical illness thus could induce epigenetic changes explaining long-term problems. We review supporting evidence. RECENT FINDINGS: Epigenetic abnormalities are found in various critical illness types, affecting DNA-methylation, histone-modification and noncoding RNAs. They at least partly arise de novo after ICU-admission. Many affect genes with functions relevant for and several associate with long-term impairments. As such, de novo DNA-methylation changes in critically ill children statistically explained part of their disturbed long-term physical/neurocognitive development. These methylation changes were in part evoked by early-parenteral-nutrition (early-PN) and statistically explained harm by early-PN on long-term neurocognitive development. Finally, long-term epigenetic abnormalities beyond hospital-discharge have been identified, affecting pathways highly relevant for long-term outcomes. SUMMARY: Epigenetic abnormalities induced by critical illness or its nutritional management provide a plausible molecular basis for their adverse effects on long-term outcomes. Identifying treatments to further attenuate these abnormalities opens perspectives to reduce the debilitating legacy of critical illness.


Assuntos
Estado Terminal , Nutrição Parenteral , Criança , Humanos , Estado Terminal/terapia , Nutrição Parenteral/métodos , Epigênese Genética , Unidades de Terapia Intensiva , DNA
12.
Clin Epigenetics ; 15(1): 8, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36639798

RESUMO

BACKGROUND: Altered DNA-methylation affects biological ageing in adults and developmental processes in children. DNA-methylation is altered by environmental factors, trauma and illnesses. We hypothesised that paediatric critical illness, and the nutritional management in the paediatric intensive care unit (PICU), affects DNA-methylation changes that underly the developmental processes of childhood ageing. RESULTS: We studied the impact of critical illness, and of the early use of parenteral nutrition (early-PN) versus late-PN, on "epigenetic age-deviation" in buccal mucosa of 818 former PICU-patients (406 early-PN, 412 late-PN) who participated in the 2-year follow-up of the multicentre PEPaNIC-RCT (ClinicalTrials.gov-NCT01536275), as compared with 392 matched healthy children, and assessed whether this relates to their impaired growth. The epigenetic age-deviation (difference between PedBE clock-estimated epigenetic age and chronological age) was calculated. Using bootstrapped multivariable linear regression models, we assessed the impact hereon of critical illness, and of early-PN versus late-PN. As compared with healthy children, epigenetic age of patients assessed 2 years after PICU-admission deviated negatively from chronological age (p < 0.05 in 51% of bootstrapped replicates), similarly in early-PN and late-PN groups. Next, we identified vulnerable subgroups for epigenetic age-deviation using interaction analysis. We revealed that DNA-methylation age-deceleration in former PICU-patients was dependent on age at time of illness (p < 0.05 for 83% of bootstrapped replicates), with vulnerability starting from 6 years onwards. Finally, we assessed whether vulnerability to epigenetic age-deviation could be related to impaired growth from PICU-admission to follow-up at 2 and 4 years. Multivariable repeated measures ANOVA showed that former PICU-patients, as compared with healthy children, grew less in height (p = 0.0002) and transiently gained weight (p = 0.0003) over the 4-year time course. Growth in height was more stunted in former PICU-patients aged ≥ 6-years at time of critical illness (p = 0.002) than in the younger patients. CONCLUSIONS: As compared with healthy children, former PICU-patients, in particular those aged ≥ 6-years at time of illness, revealed epigenetic age-deceleration, with a physical correlate revealing stunted growth in height. Whether this vulnerability around the age of 6 years for epigenetic age-deceleration and stunted growth years later relates to altered endocrine pathways activated at the time of adrenarche requires further investigation.


Assuntos
Estado Terminal , Metilação de DNA , Criança , Humanos , Fatores de Tempo , Transtornos do Crescimento , Epigênese Genética , DNA
13.
J Clin Monit Comput ; 37(1): 113-125, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35532860

RESUMO

PURPOSE: Acute kidney injury (AKI) recovery prediction remains challenging. The purpose of the present study is to develop and validate prediction models for AKI recovery at hospital discharge in critically ill patients with ICU-acquired AKI stage 3 (AKI-3). METHODS: Models were developed and validated in a development cohort (n = 229) and a matched validation cohort (n = 244) from the multicenter EPaNIC database to create prediction models with the least absolute shrinkage and selection operator (Lasso) machine-learning algorithm. We evaluated the discrimination and calibration of the models and compared their performance with plasma neutrophil gelatinase-associated lipocalin (NGAL) measured on first AKI-3 day (NGAL_AKI3) and reference model that only based on age. RESULTS: Complete recovery and complete or partial recovery occurred in 33.20% and 51.23% of the validation cohort patients respectively. The prediction model for complete recovery based on age, need for renal replacement therapy (RRT), diagnostic group (cardiac/surgical/trauma/others), and sepsis on admission had an area under the receiver operating characteristics curve (AUROC) of 0.53. The prediction model for complete or partial recovery based on age, need for RRT, platelet count, urea, and white blood cell count had an AUROC of 0.61. NGAL_AKI3 showed AUROCs of 0.55 and 0.53 respectively. In cardiac patients, the models had higher AUROCs of 0.60 and 0.71 than NGAL_AKI3's AUROCs of 0.52 and 0.54. The developed models demonstrated a better performance over the reference models (only based on age) for cardiac surgery patients, but not for patients with sepsis and for a general ICU population. CONCLUSION: Models to predict AKI recovery upon hospital discharge in critically ill patients with AKI-3 showed poor performance in the general ICU population, similar to the biomarker NGAL. In cardiac surgery patients, discrimination was acceptable, and better than NGAL. These findings demonstrate the difficulty of predicting non-reversible AKI early.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Adulto , Lipocalina-2 , Estado Terminal/terapia , Alta do Paciente , Modelos Estatísticos , Prognóstico , Estudos Prospectivos , Injúria Renal Aguda/diagnóstico , Biomarcadores , Hospitais
14.
Epigenetics ; 18(1): 2146966, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36384393

RESUMO

Critically ill children requiring intensive care suffer from impaired physical/neurocognitive development 2 y later, partially preventable by omitting early use of parenteral nutrition (early-PN) in the paediatric intensive-care-unit (PICU). Altered methylation of DNA from peripheral blood during PICU-stay provided a molecular basis hereof. Whether DNA-methylation of former PICU patients, assessed 2 y after critical illness, is different from that of healthy children remained unknown. In a pre-planned secondary analysis of the PEPaNIC-RCT (clinicaltrials.gov-NCT01536275) 2-year follow-up, we assessed buccal-mucosal DNA-methylation (Infinium-HumanMethylation-EPIC-BeadChip) of former PICU-patients (N = 406 early-PN; N = 414 late-PN) and matched healthy children (N = 392). CpG-sites differentially methylated between groups were identified with multivariable linear regression and differentially methylated DNA-regions via clustering of differentially methylated CpG-sites using kernel-estimates. Analyses were adjusted for technical variation and baseline risk factors, and corrected for multiple testing (false-discovery-rate <0.05). Differentially methylated genes were functionally annotated (KEGG-pathway database), and allocated to three classes depending on involvement in physical/neurocognitive development, critical illness and intensive medical care, or pre-PICU-admission disorders. As compared with matched healthy children, former PICU-patients showed significantly different DNA-methylation at 4047 CpG-sites (2186 genes) and 494 DNA-regions (468 genes), with most CpG-sites being hypomethylated (90.3%) and with an average absolute 2% effect-size, irrespective of timing of PN initiation. Of the differentially methylated KEGG-pathways, 41.2% were related to physical/neurocognitive development, 32.8% to critical illness and intensive medical care and 26.0% to pre-PICU-admission disorders. Two years after critical illness in children, buccal-mucosal DNA showed abnormal methylation of CpG-sites and DNA-regions located in pathways known to be important for physical/neurocognitive development.


Assuntos
Estado Terminal , Metilação de DNA , Criança , Humanos , Estado Terminal/terapia , Unidades de Terapia Intensiva Pediátrica , Nutrição Parenteral/efeitos adversos , Fatores de Risco
15.
EBioMedicine ; 80: 104057, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35584557

RESUMO

BACKGROUND: Reduced glucocorticoid-receptor (GR) expression in blood suggested that critically ill patients become glucocorticoid-resistant necessitating stress-doses of glucocorticoids. We hypothesised that critical illness evokes a tissue-specific, time-dependent expression of regulators of GR-action which adaptively guides glucocorticoid action to sites of need. METHODS: We performed a prospective, observational, cross-sectional human study and two translational mouse studies. In freshly-isolated neutrophils and monocytes and in skeletal muscle and subcutaneous adipose tissue of 137 critically ill patients and 20 healthy controls and in skeletal muscle and adipose tissue as well as in vital tissues (heart, lung, diaphragm, liver, kidney) of 88 septic and 26 healthy mice, we quantified gene expression of cortisone-reductase 11ß-HSD1, glucocorticoid-receptor-isoforms GRα and GRß, GRα-sensitivity-regulating-co-chaperone FKBP51, and GR-action-marker GILZ. Expression profiles were compared in relation to illness-duration and systemic-glucocorticoid-availability. FINDINGS: In patients' neutrophils, GRα and GILZ were substantially suppressed (p≤0·05) throughout intensive care unit (ICU)-stay, while in monocytes low/normal GRα coincided with increased GILZ (p≤0·05). FKBP51 was increased transiently (neutrophils) or always (monocytes,p≤0·05). In patients' muscle, 11ß-HSD1 and GRα were low-normal (p≤0·05) and substantially suppressed in adipose tissue (p≤0·05); FKBP51 and GILZ were increased in skeletal muscle (p≤0·05) but normal in adipose tissue. GRß was undetectable. Increasing systemic glucocorticoid availability in patients independently associated with further suppressed muscle 11ß-HSD1 and GRα, further increased FKBP51 and unaltered GILZ (p≤0·05). In septic mouse heart and lung, 11ß-HSD1, FKBP51 and GILZ were always high (p≤0·01). In heart, GRα was suppressed (p≤0·05), while normal or high in lung (all p≤0·05). In diaphragm, 11ß-HSD1 was high/normal, GRα low/normal and FKBP51 and GILZ high (p≤0·01). In kidney, 11ß-HSD1 transiently increased but decreased thereafter, GRα was normal and FKBP51 and GILZ high (p≤0·01). In liver, 11ß-HSD1 was suppressed (p≤0·01), GRα normal and FKBP51 high (p≤0·01) whereas GILZ was transiently decreased but elevated thereafter (p≤0·05). Only in lung and diaphragm, treatment with hydrocortisone further increased GILZ. INTERPRETATION: Tissue-specific, time-independent adaptations to critical illness guided GR-action predominantly to vital tissues such as lung, while (partially) protecting against collateral harm in other cells and tissues, such as neutrophils. These findings argue against maladaptive generalised glucocorticoid-resistance necessitating glucocorticoid-treatment. FUNDING: Research-Foundation-Flanders, Methusalem-Program-Flemish-Government, European-Research-Council, European-Respiratory-Society.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Estado Terminal , Estudos Transversais , Expressão Gênica , Humanos , Camundongos , Estudos Prospectivos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
16.
Crit Care ; 26(1): 133, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549984

RESUMO

BACKGROUND: Many critically ill children face long-term developmental impairments. The PEPaNIC trial attributed part of the problems at the level of neurocognitive and emotional/behavioral development to early use of parenteral nutrition (early-PN) in the PICU, as compared with withholding it for 1 week (late-PN). Insight in long-term daily life physical functional capacity after critical illness is limited. Also, whether timing of initiating PN affects long-term physical function of these children remained unknown. METHODS: This preplanned follow-up study of the multicenter PEPaNIC randomized controlled trial subjected 521 former critically ill children (253 early-PN, 268 late-PN) to quantitative physical function tests 4 years after PICU admission in Leuven or Rotterdam, in comparison with 346 age- and sex-matched healthy children. Tests included handgrip strength measurement, timed up-and-go test, 6-min walk test, and evaluation of everyday overall physical activity with an accelerometer. We compared these functional measures for the former critically ill and healthy children and for former critically ill children randomized to late-PN versus early-PN, with multivariable linear or logistic regression analyses adjusting for risk factors. RESULTS: As compared with healthy children, former critically ill children showed less handgrip strength (p < 0.0001), completed the timed up-and-go test more slowly (p < 0.0001), walked a shorter distance in 6 min (p < 0.0001) during which they experienced a larger drop in peripheral oxygen saturation (p ≤ 0.026), showed a lower energy expenditure (p ≤ 0.024), performed more light and less moderate physical activity (p ≤ 0.047), and walked fewer steps per day (p = 0.0074). Late-PN as compared with early-PN did not significantly affect these outcomes. CONCLUSIONS: Four years after PICU admission, former critically ill children showed worse physical performance as compared with healthy children, without impact of timing of supplemental PN in the PICU. This study provides further support for de-implementing the early use of PN in the PICU. Trial registration ClinicalTrials.gov, NCT01536275 ; registered on February 22, 2012.


Assuntos
Estado Terminal , Força da Mão , Criança , Estado Terminal/terapia , Seguimentos , Humanos , Unidades de Terapia Intensiva Pediátrica , Nutrição Parenteral/efeitos adversos , Desempenho Físico Funcional , Fatores de Tempo
17.
Pediatr Crit Care Med ; 23(8): 580-592, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522534

RESUMO

OBJECTIVES: PICU patients face long-term developmental impairments, partially attributable to early parenteral nutrition (PN) versus late-PN. We investigated how this legacy and harm by early-PN evolve over time. DESIGN: Preplanned secondary analysis of the multicenter PEPaNIC-RCT (ClinicalTrials.gov, NCT01536275) that enrolled 1,440 critically ill children from 2012 to 2015 and its 2- (2014-2018) and 4-year (2016-2019) cross-sectional follow-up studies. SETTING: PICUs of Leuven (Belgium), Rotterdam (The Netherlands), and Edmonton (Canada). PATIENTS: Patients and demographically matched healthy control children that underwent longitudinal assessment for physical/emotional/behavioral/neurocognitive functions at both follow-up time points. INTERVENTIONS: In the PEPaNIC-RCT, patients were randomly allocated to early-PN versus late-PN. MEASUREMENTS AND MAIN RESULTS: This within-individual longitudinal study investigated changes in physical/emotional/behavioral/neurocognitive functions from 2 to 4 years after PICU admission for 614 patients (297 early-PN and 317 late-PN, tested at mean ± sd age 5.4 ± 4.2 and 7.3 ± 4.3 yr) and for 357 demographically matched healthy children tested at age 5.6 ± 4.3 and 7.5 ± 4.3 years. We determined within-group time-courses, interaction between time and group, and independent impact of critical illness and early-PN on these time-courses. Most deficits in patients versus healthy children remained prominent over the 2 years ( p ≤ 0.01). Deficits further aggravated for height, body mass index, the executive function metacognition, intelligence, motor coordination (alternating/synchronous tapping), and memory learning-index, whereas verbal memory deficits became smaller (working/immediate/delayed memory) ( p ≤ 0.05). Adjustment for risk factors confirmed most findings and revealed that patients "grew-into-deficit" for additional executive functions (flexibility/emotional control/total executive functioning) and "grew-out-of-deficit" for additional memory functions (recognition/pictures) ( p ≤ 0.05). Time-courses were largely unaffected by early-PN versus late-PN, except for weight loss and limited catch-up for visual-motor integration and alertness in early-PN patients ( p ≤ 0.05). CONCLUSIONS: From 2- to 4-year post-PICU admission, developmental impairments remained prominent. Within that time-window, impaired growth in height, executive functioning and intelligence aggravated, and impaired memory and harm by early-PN only partially recovered. Impact on development into adulthood requires further investigation.


Assuntos
Unidades de Terapia Intensiva Pediátrica , Nutrição Parenteral , Adulto , Criança , Pré-Escolar , Estado Terminal/terapia , Estudos Transversais , Humanos , Lactente , Estudos Longitudinais , Nutrição Parenteral/efeitos adversos , Fatores de Tempo
18.
J Cachexia Sarcopenia Muscle ; 13(3): 1731-1740, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35274472

RESUMO

BACKGROUND: Intensive care unit (ICU)-acquired weakness can persist beyond ICU stay and has been associated with long-term functional impairment of ICU survivors. Recently, DNA methylation alterations were found in the blood of ICU patients, partially explaining long-term developmental impairment of critically ill children. As illness-induced aberrant DNA methylation theoretically could also be involved in long-term weakness, we investigated whether the DNA methylation signature in muscle of adult critically ill patients differs from that in muscle of healthy controls. METHODS: Genome-wide methylation was determined (Infinium® HumanMethylationEPIC BeadChips) in DNA extracted from skeletal muscle biopsies that had been collected on Day 8 ± 1 in ICU from 172 EPaNIC-trial patients [66% male sex, median age 62.7 years, median body mass index (BMI) 25.9 kg/m2 ] and 20 matched healthy controls (70% male sex, median age 58.0 years, median BMI 24.4 kg/m2 ). Methylation status of individual cytosine-phosphate-guanine (CpG) sites of patients and controls was compared with F-tests, using the Benjamini-Hochberg false discovery rate to correct for multiple comparisons. Differential methylation of DNA regions was assessed with bump hunting, with 1000 permutations assessing uncertainty, expressed as family-wise error rate. Gene expression was investigated for 10 representative affected genes. RESULTS: In DNA from ICU patients, 565 CpG sites, associated with 400 unique genes, were differentially methylated as compared with controls (average difference 3.2 ± 0.1% ranging up to 16.9%, P < 0.00005). Many of the associated genes appeared highly relevant for muscle structure and function/weakness, including genes involved in myogenesis, muscle regeneration, nerve/muscle membrane excitability, muscle denervation/re-innervation, axon guidance/myelination/degeneration/regeneration, synapse function, ion channelling with especially calcium signalling, metabolism (glucose, protein, and fat), insulin signalling, neuroendocrine hormone regulation, mitochondrial function, autophagy, apoptosis, oxidative stress, Wnt signalling, transcription regulation, muscle fat infiltration during regeneration, and fibrosis. In patients as compared with controls, we also identified two hypomethylated regions, spanning 18 and 3 CpG sites in the promoters of the HIC1 and NADK2 genes, respectively (average differences 5.8 ± 0.01% and 12.1 ± 0.04%, family-wise error rate <0.05). HIC1 and NADK2 play important roles in muscle regeneration and postsynaptic acetylcholine receptors and in mitochondrial processes, respectively. Nine of 10 investigated genes containing DNA methylation alterations were differentially expressed in patients as compared with controls (P ≤ 0.03). CONCLUSIONS: Critically ill patients present with a different DNA methylation signature in skeletal muscle as compared with healthy controls, which in theory could provide a biological basis for long-term persistence of weakness in ICU survivors. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00512122, registered on 31 July 2007.


Assuntos
Estado Terminal , Metilação de DNA , Cuidados Críticos , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Músculo Esquelético
19.
Environ Int ; 158: 106962, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739923

RESUMO

BACKGROUND: Children who have been critically ill face long-term developmental impairments. Iatrogenic exposure to di(2-ethylhexyl)phthalate (DEHP), a plasticizer leaching from plastic indwelling medical devices used in the pediatric intensive care unit (PICU), has been associated with the pronounced attention deficit observed in children 4 years after critical illness. As concerns about DEHP toxicity increased, governmental authorities urged the phase out of DEHP in indwelling medical devices and replacement with alternative plasticizers. We hypothesized that exposure to DEHP decreased over the years, attenuating the pronounced long-term attention deficit of these vulnerable children. METHODS: We compared plasma concentrations of 3 oxidative DEHP metabolites (5cx-MEPP, 5OH-MEHP, 5oxo-MEHP) on the last PICU day in 216 patients who participated in the Tight Glucose Control study (2004-2007) and 334 patients who participated in the PEPaNIC study (2012-2015) and survived PICU stay. Corresponding minimal exposures to these metabolites (plasma concentration multiplied with number of days in PICU) were also evaluated. In patients with 4-year follow-up data, we compared measures of attention (standardized reaction times and consistency). Comparisons were performed with univariable analyses and multivariable linear regression analyses adjusted for baseline risk factors. RESULTS: In the PEPaNIC patients, last PICU day plasma concentrations of 5cx-MEPP, 5OH-MEHP, 5oxo-MEHP and their sum, and corresponding minimal exposures, were reduced to 17-69% of those in the Tight Glucose Control study (p < 0.0001). Differences remained significant after multivariable adjustment (p ≤ 0.001). PEPaNIC patients did not show better attention than patients in the Tight Glucose Control study, also not after multivariable adjustment for risk factors. CONCLUSION: Exposure of critically ill children to DEHP in the PICU decreased over the years, but the lower exposure did not translate into improved attention 4 years later. Whether the residual exposure may still be toxic or whether the plasticizers replacing DEHP may not be safe for neurodevelopment needs further investigation.


Assuntos
Dietilexilftalato , Criança , Cuidados Críticos , Estado Terminal , Humanos , Plastificantes , Plásticos
20.
Intensive Care Med ; 48(1): 25-35, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34816288

RESUMO

PURPOSE: Withholding parenteral nutrition (PN) early in critical illness, late-PN, has shown to prevent infections despite a higher peak C-reactive protein (CRP). We investigated whether the accentuated CRP rise was caused by a systemic inflammatory effect mediated by cytokines or arose as a consequence of the different feeding regimens, and whether it related to improved outcome with late-PN. METHODS: This secondary analysis of the EPaNIC-RCT first investigated, with multivariable linear regression analyses, determinants of late-PN-induced CRP rise and its association with cytokine responses (IL-6, IL-10, TNF-α) in matched early-PN and late-PN patients requiring intensive care for ≥ 3 days. Secondly, with multivariable logistic regression and Cox proportional-hazard analyses, we investigated whether late-PN-induced CRP rises mediated infection prevention and enhanced recovery or reflected an adverse effect counteracting such benefits of late-PN. RESULTS: CRP peaked on day 3, higher with late-PN [216(152-274)mg/l] (n = 946) than with early-PN [181(122-239)mg/l] (n = 946) (p < 0.0001). Independent determinants of higher CRP rise were lower carbohydrate and protein intakes (p ≤ 0.04) with late-PN, besides higher blood glucose and serum insulin concentrations (p ≤ 0.01). Late-PN did not affect cytokines. Higher CRP rises were independently associated with more infections and lower likelihood of early ICU discharge (p ≤ 0.002), and the effect size of late-PN versus early-PN on these outcomes was increased rather than reduced after adjusting for CRP rise, not confirming a mediating role. CONCLUSIONS: The higher CRP rise with late-PN, explained by the early macronutrient deficits, did not relate to cytokine responses and thus did not reflect more systemic inflammation. Instead of mediating clinical benefit on infection or recovery, the accentuated CRP rise appeared an adverse effect reducing such late-PN benefits.


Assuntos
Proteína C-Reativa , Estado Terminal , Estado Terminal/terapia , Humanos , Inflamação , Nutrientes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...