Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114149, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38678560

RESUMO

Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor ß (TGFß)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFß-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFß-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFß-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.

2.
Sci Rep ; 14(1): 439, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172172

RESUMO

Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8 and Vcam1, while the surviving proximal tubules (PTs) showed restored transcriptional signature. We also found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.


Assuntos
Túbulos Renais , Insuficiência Renal Crônica , Humanos , Túbulos Renais/patologia , Rim/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fibroblastos/fisiologia , Fibrose
3.
Cell Rep ; 42(11): 113465, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976157

RESUMO

Mitochondria use the electron transport chain to generate high-energy phosphate from oxidative phosphorylation, a process also regulated by the mitochondrial Ca2+ uniporter (MCU) and Ca2+ levels. Here, we show that MCUb, an inhibitor of MCU-mediated Ca2+ influx, is induced by caloric restriction, where it increases mitochondrial fatty acid utilization. To mimic the fasted state with reduced mitochondrial Ca2+ influx, we generated genetically altered mice with skeletal muscle-specific MCUb expression that showed greater fatty acid usage, less fat accumulation, and lower body weight. In contrast, mice lacking Mcub in skeletal muscle showed increased pyruvate dehydrogenase activity, increased muscle malonyl coenzyme A (CoA), reduced fatty acid utilization, glucose intolerance, and increased adiposity. Mechanistically, pyruvate dehydrogenase kinase 4 (PDK4) overexpression in muscle of Mcub-deleted mice abolished altered substrate preference. Thus, MCUb is an inducible control point in regulating skeletal muscle mitochondrial Ca2+ levels and substrate utilization that impacts total metabolic balance.


Assuntos
Cálcio , Mitocôndrias , Animais , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo
4.
Res Sq ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37293022

RESUMO

Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8, while the surviving proximal tubules (PTs) showed restored transcriptional signature. Furthermore, we found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.

5.
Front Physiol ; 14: 1054169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733907

RESUMO

Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown. Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l -/- mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l -/- mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus -9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l -/- null mice had significantly smaller hearts compared to wild type littermates. Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l -/- mice showed a mild but significant reduction in heart weight.

6.
Biol Open ; 11(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34994383

RESUMO

The extracellular matrix (ECM) is a complex assembly of macromolecules that provides both architectural support and molecular signals to cells and modulate their behaviors. Originally considered a passive mechanical structure, decades of research have since demonstrated how the ECM dynamically regulates a diverse set of cellular processes in development, homeostasis, and disease progression. In September 2021, the American Society for Matrix Biology (ASMB) organized a hybrid scientific meeting, integrating in-person and virtual formats, to discuss the latest developments in ECM research. Here, we highlight exciting scientific advances that emerged from the meeting including (1) the use of model systems for fundamental and translation ECM research, (2) ECM-targeting approaches as therapeutic modalities, (3) cell-ECM interactions, and (4) the ECM as a critical component of tissue engineering strategies. In addition, we discuss how the ASMB incorporated mentoring, career development, and diversity, equity, and inclusion initiatives in both virtual and in-person events. Finally, we reflect on the hybrid scientific conference format and how it will help the ASMB accomplish its mission moving forward.


Assuntos
Matriz Extracelular , Modelos Biológicos , Humanos
7.
Nat Commun ; 12(1): 3928, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168130

RESUMO

The thrombospondin (Thbs) family of secreted matricellular proteins are stress- and injury-induced mediators of cellular attachment dynamics and extracellular matrix protein production. Here we show that Thbs1, but not Thbs2, Thbs3 or Thbs4, induces lethal cardiac atrophy when overexpressed. Mechanistically, Thbs1 binds and activates the endoplasmic reticulum stress effector PERK, inducing its downstream transcription factor ATF4 and causing lethal autophagy-mediated cardiac atrophy. Antithetically, Thbs1-/- mice develop greater cardiac hypertrophy with pressure overload stimulation and show reduced fasting-induced atrophy. Deletion of Thbs1 effectors/receptors, including ATF6α, CD36 or CD47 does not diminish Thbs1-dependent cardiac atrophy. However, deletion of the gene encoding PERK in Thbs1 transgenic mice blunts the induction of ATF4 and autophagy, and largely corrects the lethal cardiac atrophy. Finally, overexpression of PERK or ATF4 using AAV9 gene-transfer similarly promotes cardiac atrophy and lethality. Hence, we identified Thbs1-mediated PERK-eIF2α-ATF4-induced autophagy as a critical regulator of cardiomyocyte size in the stressed heart.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Miocárdio/patologia , Trombospondinas/metabolismo , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Atrofia , Autofagia/fisiologia , Cardiomegalia/genética , Cardiomegalia/patologia , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Expressão Gênica , Lisossomos/metabolismo , Masculino , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Proteólise , Trombospondinas/genética , eIF-2 Quinase/genética
8.
J Biol Chem ; 294(22): 8918-8929, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31006653

RESUMO

Valosin-containing protein (VCP), also known as p97, is an ATPase with diverse cellular functions, although the most highly characterized is targeting of misfolded or aggregated proteins to degradation pathways, including the endoplasmic reticulum-associated degradation (ERAD) pathway. However, how VCP functions in the heart has not been carefully examined despite the fact that human mutations in VCP cause Paget disease of bone and frontotemporal dementia, an autosomal dominant multisystem proteinopathy that includes disease in the heart, skeletal muscle, brain, and bone. Here we generated heart-specific transgenic mice overexpressing WT VCP or a VCPK524A mutant with deficient ATPase activity. Transgenic mice overexpressing WT VCP exhibit normal cardiac structure and function, whereas mutant VCP-overexpressing mice develop cardiomyopathy. Mechanistically, mutant VCP-overexpressing hearts up-regulate ERAD complex components and have elevated levels of ubiquitinated proteins prior to manifestation of cardiomyopathy, suggesting dysregulation of ERAD and inefficient clearance of proteins targeted for proteasomal degradation. The hearts of mutant VCP transgenic mice also exhibit profound defects in cardiomyocyte nuclear morphology with increased nuclear envelope proteins and nuclear lamins. Proteomics revealed overwhelming interactions of endogenous VCP with ribosomal, ribosome-associated, and RNA-binding proteins in the heart, and impairment of cardiac VCP activity resulted in aggregation of large ribosomal subunit proteins. These data identify multifactorial functions and diverse mechanisms whereby VCP regulates cardiomyocyte protein and RNA quality control that are critical for cardiac homeostasis, suggesting how human VCP mutations negatively affect the heart.


Assuntos
Cardiomiopatias/patologia , Coração/fisiologia , Miocárdio/metabolismo , Proteína com Valosina/metabolismo , Animais , Cardiomiopatias/metabolismo , Células Cultivadas , Degradação Associada com o Retículo Endoplasmático , Laminas/metabolismo , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Proteínas Ribossômicas/metabolismo , Ubiquitinação , Proteína com Valosina/genética
9.
Nat Commun ; 10(1): 76, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622267

RESUMO

Thrombospondins (Thbs) are a family of five secreted matricellular glycoproteins in vertebrates that broadly affect cell-matrix interaction. While Thbs4 is known to protect striated muscle from disease by enhancing sarcolemmal stability through increased integrin and dystroglycan attachment complexes, here we show that Thbs3 antithetically promotes sarcolemmal destabilization by reducing integrin function, augmenting disease-induced decompensation. Deletion of Thbs3 in mice enhances integrin membrane expression and membrane stability, protecting the heart from disease stimuli. Transgene-mediated overexpression of α7ß1D integrin in the heart ameliorates the disease predisposing effects of Thbs3 by augmenting sarcolemmal stability. Mechanistically, we show that mutating Thbs3 to contain the conserved RGD integrin binding domain normally found in Thbs4 and Thbs5 now rescues the defective expression of integrins on the sarcolemma. Thus, Thbs proteins mediate the intracellular processing of integrin plasma membrane attachment complexes to regulate the dynamics of cellular remodeling and membrane stability.


Assuntos
Cardiomiopatias/patologia , Integrinas/metabolismo , Sarcolema/patologia , Trombospondinas/metabolismo , Animais , Células COS , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/etiologia , Células Cultivadas , Chlorocebus aethiops , Modelos Animais de Doenças , Distroglicanas/metabolismo , Ecocardiografia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Miócitos Cardíacos , Cultura Primária de Células , Domínios e Motivos de Interação entre Proteínas/genética , Ratos , Ratos Sprague-Dawley , Sarcolema/metabolismo , Trombospondinas/genética
10.
Mol Cell Biol ; 38(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712757

RESUMO

Thrombospondins are stress-inducible secreted glycoproteins with critical functions in tissue injury and healing. Thrombospondin-4 (Thbs4) is protective in cardiac and skeletal muscle, where it activates an adaptive endoplasmic reticulum (ER) stress response, induces expansion of the ER, and enhances sarcolemmal stability. However, it is unclear if Thbs4 has these protective functions from within the cell, from the extracellular matrix, or from the secretion process itself. In this study, we generated transgenic mice with cardiac cell-specific overexpression of a secretion-defective mutant of Thbs4 to evaluate its exclusive intracellular and secretion-dependent functions. Like wild-type Thbs4, the secretion-defective mutant upregulates the adaptive ER stress response and expands the ER and intracellular vesicles in cardiomyocytes. However, only the secretion-defective Thbs4 mutant produces cardiomyopathy with sarcolemmal weakness and rupture that is associated with reduced adhesion-forming glycoproteins in the membrane. Similarly, deletion of Thbs4 in the mdx mouse model of Duchenne muscular dystrophy enhances cardiomyocyte membrane instability and cardiomyopathy. Finally, overexpression of the secretion-defective Thbs4 mutant in Drosophila, but not wild-type Thbs4, impaired muscle function and sarcomere alignment. These results suggest that transit through the secretory pathway is required for Thbs4 to augment sarcolemmal stability, while ER stress induction and vesicular expansion mediated by Thbs4 are exclusively intracellular processes.


Assuntos
Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Trombospondinas/metabolismo , Animais , Animais Geneticamente Modificados , Cardiomiopatias/genética , Células Cultivadas , Drosophila melanogaster/genética , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Camundongos Transgênicos , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Mutação , Miócitos Cardíacos/patologia , Ratos , Sarcolema/metabolismo , Sarcolema/patologia , Via Secretória , Trombospondinas/deficiência , Trombospondinas/genética
11.
Elife ; 52016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27669143

RESUMO

Skeletal muscle is highly sensitive to mutations in genes that participate in membrane stability and cellular attachment, which often leads to muscular dystrophy. Here we show that Thrombospondin-4 (Thbs4) regulates skeletal muscle integrity and its susceptibility to muscular dystrophy through organization of membrane attachment complexes. Loss of the Thbs4 gene causes spontaneous dystrophic changes with aging and accelerates disease in 2 mouse models of muscular dystrophy, while overexpression of mouse Thbs4 is protective and mitigates dystrophic disease. In the myofiber, Thbs4 selectively enhances vesicular trafficking of dystrophin-glycoprotein and integrin attachment complexes to stabilize the sarcolemma. In agreement, muscle-specific overexpression of Drosophila Tsp or mouse Thbs4 rescues a Drosophila model of muscular dystrophy with augmented membrane residence of ßPS integrin. This functional conservation emphasizes the fundamental importance of Thbs' as regulators of cellular attachment and membrane stability and identifies Thbs4 as a potential therapeutic target for muscular dystrophy.


Assuntos
Expressão Gênica , Membranas/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Trombospondinas/metabolismo , Animais , Modelos Animais de Doenças , Drosophila , Camundongos , Distrofias Musculares/fisiopatologia , Distrofias Musculares/prevenção & controle
12.
Circ Res ; 119(7): 865-79, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27461939

RESUMO

RATIONALE: Catecholamines increase cardiac contractility, but exposure to high concentrations or prolonged exposures can cause cardiac injury. A recent study demonstrated that a single subcutaneous injection of isoproterenol (ISO; 200 mg/kg) in mice causes acute myocyte death (8%-10%) with complete cardiac repair within a month. Cardiac regeneration was via endogenous cKit(+) cardiac stem cell-mediated new myocyte formation. OBJECTIVE: Our goal was to validate this simple injury/regeneration system and use it to study the biology of newly forming adult cardiac myocytes. METHODS AND RESULTS: C57BL/6 mice (n=173) were treated with single injections of vehicle, 200 or 300 mg/kg ISO, or 2 daily doses of 200 mg/kg ISO for 6 days. Echocardiography revealed transiently increased systolic function and unaltered diastolic function 1 day after single ISO injection. Single ISO injections also caused membrane injury in ≈10% of myocytes, but few of these myocytes appeared to be necrotic. Circulating troponin I levels after ISO were elevated, further documenting myocyte damage. However, myocyte apoptosis was not increased after ISO injury. Heart weight to body weight ratio and fibrosis were also not altered 28 days after ISO injection. Single- or multiple-dose ISO injury was not associated with an increase in the percentage of 5-ethynyl-2'-deoxyuridine-labeled myocytes. Furthermore, ISO injections did not increase new myocytes in cKit(+/Cre)×R-GFP transgenic mice. CONCLUSIONS: A single dose of ISO causes injury in ≈10% of the cardiomyocytes. However, most of these myocytes seem to recover and do not elicit cKit(+) cardiac stem cell-derived myocyte regeneration.


Assuntos
Isoproterenol/administração & dosagem , Isoproterenol/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Regeneração/efeitos dos fármacos , Animais , Catecolaminas/administração & dosagem , Catecolaminas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/fisiologia , Regeneração/fisiologia
13.
J Biol Chem ; 291(19): 9920-8, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26966179

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and ß-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.


Assuntos
Catepsinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Fibras Musculares Esqueléticas/enzimologia , Distrofia Muscular Animal/enzimologia , Distrofia Muscular de Duchenne/enzimologia , Animais , Citoesqueleto/enzimologia , Citoesqueleto/genética , Citoesqueleto/patologia , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Necrose , Proteólise , Sarcolema/enzimologia , Sarcolema/genética , Sarcolema/patologia
14.
Arterioscler Thromb Vasc Biol ; 36(1): 60-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26564821

RESUMO

OBJECTIVE: Periostin is a secreted protein that can alter extracellular matrix remodeling in response to tissue injury. However, the functional role of periostin in the development of atherosclerotic plaques has yet to be described despite its observed induction in diseased vessels and presence in the serum. APPROACH AND RESULTS: Hyperlipidemic, apolipoprotein E-null mice (ApoE(-/) (-)) were crossed with periostin (Postn(-/-)) gene-deleted mice and placed on a high-fat diet for 6 or 14 weeks to induce atherosclerosis. En face analysis of aortas showed significantly decreased lesion areas of ApoE(-/-) Postn(-/-) mice compared with ApoE(-/-) mice, as well as a reduced inflammatory response with less macrophage content. Moreover, diseased aortas from ApoE(-/-) Postn(-/-) mice displayed a disorganized extracellular matrix with less collagen cross linking and smaller fibrotic caps, as well as increased matrix metalloproteinase-2, metalloproteinase-13, and procollagen-lysine, 2-oxoglutarate 5-dioxygenase-1 mRNA expression. Furthermore, the loss of periostin was associated with a switch in vascular smooth muscle cells toward a more proliferative and synthetic phenotype. Mechanistically, the loss of periostin reduced macrophage recruitment by transforming growth factor-ß in cellular migration assays. CONCLUSIONS: These are the first genetic data detailing the function of periostin as a regulator of atherosclerotic lesion formation and progression. The data suggest that periostin could be a therapeutic target for atherosclerotic plaque formation through modulation of the immune response and extracellular matrix remodeling.


Assuntos
Aorta Torácica/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Moléculas de Adesão Celular/deficiência , Matriz Extracelular/metabolismo , Deleção de Genes , Inflamação/prevenção & controle , Remodelação Vascular , Animais , Aorta Torácica/imunologia , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Moléculas de Adesão Celular/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Placa Aterosclerótica , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo
15.
Mol Cell Biol ; 36(1): 2-12, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459760

RESUMO

Thrombospondins are a family of stress-inducible secreted glycoproteins that underlie tissue remodeling. We recently reported that thrombospondin-4 (Thbs4) has a critical intracellular function, regulating the adaptive endoplasmic reticulum (ER) stress pathway through activating transcription factor 6α (Atf6α). In the present study, we dissected the domains of Thbs4 that mediate interactions with ER proteins, such as BiP (Grp78) and Atf6α, and the domains mediating activation of the ER stress response. Functionally, Thbs4 localized to the ER and post-ER vesicles and was actively secreted from cardiomyocytes, as were the type III repeat (T3R) and TSP-C domains, while the LamG domain localized to the Golgi apparatus. We also mutated the major calcium-binding motifs within the T3R domain of full-length Thbs4, causing ER retention and secretion blockade. The T3R and TSP-C domains as well as wild-type Thbs4 and the calcium-binding mutant interacted with Atf6α, induced an adaptive ER stress response, and caused expansion of intracellular vesicles. In contrast, overexpression of a related secreted oligomeric glycoprotein, Nell2, which lacks only the T3R and TSP-C domains, did not cause these effects. Finally, deletion of Atf6α abrogated Thbs4-induced vesicular expansion. Taken together, these data identify the critical intracellular functional domains of Thbs4, which was formerly thought to have only extracellular functions.


Assuntos
Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Trombospondinas/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Chaperona BiP do Retículo Endoplasmático , Glicoproteínas/genética , Proteínas de Choque Térmico , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Transporte Proteico/genética , Ratos , Transdução de Sinais/genética , Trombospondinas/genética
16.
Circ Res ; 116(3): 425-36, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25520363

RESUMO

RATIONALE: To maintain cardiac mechanical and structural integrity after an ischemic insult, profound alterations occur within the extracellular matrix. Osteoglycin is a small leucine-rich proteoglycan previously described as a marker of cardiac hypertrophy. OBJECTIVE: To establish whether osteoglycin may play a role in cardiac integrity and function after myocardial infarction (MI). METHODS AND RESULTS: Osteoglycin expression is associated with collagen deposition and scar formation in mouse and human MI. Absence of osteoglycin in mice resulted in significantly increased rupture-related mortality with tissue disruption, intramyocardial bleeding, and increased cardiac dysfunction, despite equal infarct sizes. Surviving osteoglycin null mice had greater infarct expansion in comparison with wild-type mice because of impaired collagen fibrillogenesis and maturation in the infarcts as revealed by electron microscopy and collagen polarization. Absence of osteoglycin did not affect cardiomyocyte hypertrophy in the remodeling remote myocardium. In cultured fibroblasts, osteoglycin knockdown or supplementation did not alter transforming growth factor-ß signaling. Adenoviral overexpression of osteoglycin in wild-type mice significantly improved collagen quality, thereby blunting cardiac dilatation and dysfunction after MI. In osteoglycin null mice, adenoviral overexpression of osteoglycin was unable to prevent rupture-related mortality because of insufficiently restoring osteoglycin protein levels in the heart. Finally, circulating osteoglycin levels in patients with heart failure were significantly increased in the patients with a previous history of MI compared with those with nonischemic heart failure and correlated with survival, left ventricular volumes, and other markers of fibrosis. CONCLUSIONS: Increased osteoglycin expression in the infarct scar promotes proper collagen maturation and protects against cardiac disruption and adverse remodeling after MI. In human heart failure, osteoglycin is a promising biomarker for ischemic heart failure.


Assuntos
Cardiomegalia/metabolismo , Colágeno/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Cardiomegalia/patologia , Cicatriz/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfotoxina-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Endogâmicos Lew , Remodelação Ventricular
17.
J Am Coll Cardiol ; 63(24): 2734-41, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24681145

RESUMO

OBJECTIVES: This study sought to investigate the effect of endothelial dysfunction on the development of cardiac hypertrophy and fibrosis. BACKGROUND: Endothelial dysfunction accompanies cardiac hypertrophy and fibrosis, but its contribution to these conditions is unclear. Increased nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) activation causes endothelial dysfunction. METHODS: Transgenic mice with endothelial-specific NOX2 overexpression (TG mice) and wild-type littermates received long-term angiotensin II (AngII) infusion (1.1 mg/kg/day, 2 weeks) to induce hypertrophy and fibrosis. RESULTS: TG mice had systolic hypertension and hypertrophy similar to those seen in wild-type mice but developed greater cardiac fibrosis and evidence of isolated left ventricular diastolic dysfunction (p < 0.05). TG myocardium had more inflammatory cells and VCAM-1-positive vessels than did wild-type myocardium after AngII treatment (both p < 0.05). TG microvascular endothelial cells (ECs) treated with AngII recruited 2-fold more leukocytes than did wild-type ECs in an in vitro adhesion assay (p < 0.05). However, inflammatory cell NOX2 per se was not essential for the profibrotic effects of AngII. TG showed a higher level of endothelial-mesenchymal transition (EMT) than did wild-type mice after AngII infusion. In cultured ECs treated with AngII, NOX2 enhanced EMT as assessed by the relative expression of fibroblast versus endothelial-specific markers. CONCLUSIONS: AngII-induced endothelial NOX2 activation has profound profibrotic effects in the heart in vivo that lead to a diastolic dysfunction phenotype. Endothelial NOX2 enhances EMT and has proinflammatory effects. This may be an important mechanism underlying cardiac fibrosis and diastolic dysfunction during increased renin-angiotensin activation.


Assuntos
Cardiomegalia/enzimologia , Endotélio Vascular/enzimologia , Mediadores da Inflamação/fisiologia , Glicoproteínas de Membrana/fisiologia , Células-Tronco Mesenquimais/enzimologia , NADPH Oxidases/fisiologia , Disfunção Ventricular Esquerda/enzimologia , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Endotélio Vascular/patologia , Fibrose/enzimologia , Fibrose/genética , Fibrose/patologia , Insuficiência Cardíaca Diastólica/enzimologia , Insuficiência Cardíaca Diastólica/genética , Insuficiência Cardíaca Diastólica/patologia , Humanos , Masculino , Glicoproteínas de Membrana/genética , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Transgênicos , NADPH Oxidase 2 , NADPH Oxidases/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia
18.
Circ Res ; 114(8): 1246-57, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24573206

RESUMO

RATIONALE: Wound healing after myocardial infarction involves a highly regulated inflammatory response that is initiated by the appearance of neutrophils to clear out dead cells and matrix debris. Neutrophil infiltration is controlled by multiple secreted factors, including the master regulator transforming growth factor ß (TGFß). Broad inhibition of TGFß early postinfarction has worsened post-myocardial infarction remodeling; however, this signaling displays potent cell specificity, and targeted suppression particularly in the myocyte could be beneficial. OBJECTIVE: Our aims were to test the hypothesis that targeted suppression of myocyte TGFß signaling ameliorates postinfarct remodeling and inflammatory modulation and to identify mechanisms by which this may be achieved. METHODS AND RESULTS: Mice with TGFß receptor-coupled signaling genetically suppressed only in cardiac myocytes (conditional TGFß receptor 1 or 2 knockout) displayed marked declines in neutrophil recruitment and accompanying metalloproteinase 9 activation after infarction and were protected against early-onset mortality due to wall rupture. This is a cell-specific effect, because broader inhibition of TGFß signaling led to 100% early mortality due to rupture. Rather than by altering fibrosis or reducing the generation of proinflammatory cytokines/chemokines, myocyte-selective TGFß inhibition augmented the synthesis of a constellation of highly protective cardiokines. These included thrombospondin 4 with associated endoplasmic reticulum stress responses, interleukin-33, follistatin-like 1, and growth and differentiation factor 15, which is an inhibitor of neutrophil integrin activation and tissue migration. CONCLUSIONS: These data reveal a novel role of myocyte TGFß signaling as a potent regulator of protective cardiokine and neutrophil-mediated infarct remodeling.


Assuntos
Movimento Celular/fisiologia , Citoproteção/fisiologia , Infarto do Miocárdio/mortalidade , Miócitos Cardíacos/metabolismo , Neutrófilos/patologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Proteínas Relacionadas à Folistatina/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Interleucina-33 , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida , Trombospondinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
Eur Heart J ; 34(25): 1930-41, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23139380

RESUMO

AIMS: The cardiac extracellular matrix is highly involved in regulating inflammation, remodelling, and function of the heart. Whether matrix alterations relate to the degree of inflammation, fibrosis, and overall rejection in the human transplanted heart remained, until now, unknown. METHODS AND RESULTS: Expression of matricellular proteins, proteoglycans, and metalloproteinases (MMPs) and their inhibitors (TIMPs) were investigated in serial endomyocardial biopsies (n = 102), in a cohort of 39 patients within the first year after cardiac transplantation. Out of 15 matrix-related proteins, intragraft transcript and protein levels of syndecan-1 and MMP-9 showed a strong association with the degree of cardiac allograft rejection (CAR), the expression of pro-inflammatory cytokines tumour necrosis factor (TNF)-α, interleukin (IL)-6 and transforming growth factor (TGF)-ß, and with infiltrating CD3⁺ T-cells and CD68⁺ monocytes. In addition, SPARC, CTGF, TSP-2, MMP-14, TIMP-1, Testican-1, TSP-1, Syndecan-1, MMP-2, -9, and -14, as well as IL-6 and TGF-ß transcript levels and inflammatory infiltrates all strongly relate to collagen expression in the transplanted heart. More importantly, receiver operating characteristic curve analysis demonstrated that syndecan-1 and MMP-9 transcript levels had the highest area under the curve (0.969 and 0.981, respectively), thereby identifying both as a potential decision-making tool to discriminate rejecting from non-rejecting hearts. CONCLUSION: Out of 15 matrix-related proteins, we identified synd-1 and MMP-9 intragraft transcript levels of as strong predictors of human CAR. In addition, a multitude of non-structural matrix-related proteins closely associate with collagen expression in the transplanted heart. Therefore, we are convinced that these findings deserve further investigation and are likely to be of clinical value to prevent human CAR.


Assuntos
Matriz Extracelular/metabolismo , Rejeição de Enxerto/patologia , Transplante de Coração , Metaloproteinases da Matriz/metabolismo , Miocárdio/patologia , Aloenxertos , Biomarcadores/metabolismo , Citocinas/metabolismo , Feminino , Fibrose/metabolismo , Fibrose/patologia , Rejeição de Enxerto/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Miocardite/metabolismo , Miocardite/patologia , Proteoglicanas/metabolismo , Linfócitos T/patologia , Inibidores Teciduais de Metaloproteinases/metabolismo
20.
Cell ; 149(6): 1257-68, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682248

RESUMO

Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6α and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6α deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α.


Assuntos
Estresse do Retículo Endoplasmático , Transdução de Sinais , Trombospondinas/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Trombospondinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...