Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446179

RESUMO

Cholesterol metabolism dysregulation is associated with several neurological disorders. In Huntington's disease (HD), several enzymes involved in cholesterol metabolism are downregulated, among which the neuronal cholesterol 24-hydroxylase, CYP46A1, is of particular interest. The restoration of CYP46A1 expression in striatal neurons of HD mouse models is beneficial for motor behavior, cholesterol metabolism, transcriptomic activity, and alleviates neuropathological hallmarks induced by mHTT. Among the genes regulated after CYP46A1 restoration, those involved in cholesterol synthesis and efflux may explain the positive effect of CYP46A1 on cholesterol precursor metabolites. Since cholesterol homeostasis results from a fine-tuning between neurons and astrocytes, we quantified the distribution of key genes regulating cholesterol metabolism and efflux in astrocytes and neurons using in situ hybridization coupled with S100ß and NeuN immunostaining, respectively. Neuronal expression of CYP46A1 in the striatum of HD zQ175 mice increased key cholesterol synthesis driver genes (Hmgcr, Dhcr24), specifically in neurons. This effect was associated with an increase of the srebp2 transcription factor gene that regulates most of the genes encoding for cholesterol enzymes. However, the cholesterol efflux gene, ApoE, was specifically upregulated in astrocytes by CYP46A1, probably though a paracrine effect. In summary, the neuronal expression of CYP46A1 has a dual and specific effect on neurons and astrocytes, regulating cholesterol metabolism. The neuronal restoration of CYP46A1 in HD paves the way for future strategies to compensate for mHTT toxicity.


Assuntos
Doença de Huntington , Camundongos , Animais , Colesterol 24-Hidroxilase/genética , Doença de Huntington/metabolismo , Neurônios/metabolismo , Colesterol/metabolismo , Homeostase , Modelos Animais de Doenças , Corpo Estriado/metabolismo
3.
Nat Commun ; 13(1): 1807, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379786

RESUMO

Enduring behavioral changes upon stress exposure involve changes in gene expression sustained by epigenetic modifications in brain circuits, including the mesocorticolimbic pathway. Brahma (BRM) and Brahma Related Gene 1 (BRG1) are ATPase subunits of the SWI/SNF complexes involved in chromatin remodeling, a process essential to enduring plastic changes in gene expression. Here, we show that in mice, social defeat induces changes in BRG1 nuclear distribution. The inactivation of the Brg1/Smarca4 gene within dopamine-innervated regions or the constitutive inactivation of the Brm/Smarca2 gene leads to resilience to repeated social defeat and decreases the behavioral responses to cocaine without impacting midbrain dopamine neurons activity. Within striatal medium spiny neurons, Brg1 gene inactivation reduces the expression of stress- and cocaine-induced immediate early genes, increases levels of heterochromatin and at a global scale decreases chromatin accessibility. Altogether these data demonstrate the pivotal function of SWI/SNF complexes in behavioral and transcriptional adaptations to salient environmental challenges.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Recompensa
4.
Mol Psychiatry ; 27(2): 918-928, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34785784

RESUMO

The persistent and experience-dependent nature of drug addiction may result in part from epigenetic alterations, including non-coding micro-RNAs (miRNAs), which are both critical for neuronal function and modulated by cocaine in the striatum. Two major striatal cell populations, the striato-nigral and striato-pallidal projection neurons, express, respectively, the D1 (D1-SPNs) and D2 (D2-SPNs) dopamine receptor, and display distinct but complementary functions in drug-evoked responses. However, a cell-type-specific role for miRNAs action has yet to be clarified. Here, we evaluated the expression of a subset of miRNAs proposed to modulate cocaine effects in the nucleus accumbens (NAc) and dorsal striatum (DS) upon sustained cocaine exposure in mice and showed that these selected miRNAs were preferentially upregulated in the NAc. We focused on miR-1 considering the important role of some of its predicted mRNA targets, Fosb and Npas4, in the effects of cocaine. We validated these targets in vitro and in vivo. We explored the potential of miR-1 to regulate cocaine-induced behavior by overexpressing it in specific striatal cell populations. In DS D1-SPNs miR-1 overexpression downregulated Fosb and Npas4 and reduced cocaine-induced CPP reinstatement, but increased cue-induced cocaine seeking. In DS D2-SPNs miR-1 overexpression reduced the motivation to self-administer cocaine. Our results indicate a role of miR1 and its target genes, Fosb and Npas4, in these behaviors and highlight a precise cell-type- and region-specific modulatory role of miR-1, illustrating the importance of cell-specific investigations.


Assuntos
Cocaína , MicroRNAs , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cocaína/metabolismo , Cocaína/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Autoadministração
5.
Front Synaptic Neurosci ; 13: 799274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970134

RESUMO

Drug addiction is defined as a compulsive pattern of drug-seeking- and taking- behavior, with recurrent episodes of abstinence and relapse, and a loss of control despite negative consequences. Addictive drugs promote reinforcement by increasing dopamine in the mesocorticolimbic system, which alters excitatory glutamate transmission within the reward circuitry, thereby hijacking reward processing. Within the reward circuitry, the striatum is a key target structure of drugs of abuse since it is at the crossroad of converging glutamate inputs from limbic, thalamic and cortical regions, encoding components of drug-associated stimuli and environment, and dopamine that mediates reward prediction error and incentive values. These signals are integrated by medium-sized spiny neurons (MSN), which receive glutamate and dopamine axons converging onto their dendritic spines. MSN primarily form two mostly distinct populations based on the expression of either DA-D1 (D1R) or DA-D2 (D2R) receptors. While a classical view is that the two MSN populations act in parallel, playing antagonistic functional roles, the picture seems much more complex. Herein, we review recent studies, based on the use of cell-type-specific manipulations, demonstrating that dopamine differentially modulates dendritic spine density and synapse formation, as well as glutamate transmission, at specific inputs projecting onto D1R-MSN and D2R-MSN to shape persistent pathological behavioral in response to drugs of abuse. We also discuss the identification of distinct molecular events underlying the detrimental interplay between dopamine and glutamate signaling in D1R-MSN and D2R-MSN and highlight the relevance of such cell-type-specific molecular studies for the development of innovative strategies with potential therapeutic value for addiction. Because drug addiction is highly prevalent in patients with other psychiatric disorders when compared to the general population, we last discuss the hypothesis that shared cellular and molecular adaptations within common circuits could explain the co-occurrence of addiction and depression. We will therefore conclude this review by examining how the nucleus accumbens (NAc) could constitute a key interface between addiction and depression.

6.
Sci Adv ; 7(43): eabg5970, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669474

RESUMO

Addictive drugs increase dopamine in the nucleus accumbens (NAc), where it persistently shapes excitatory glutamate transmission and hijacks natural reward processing. Here, we provide evidence, from mice to humans, that an underlying mechanism relies on drug-evoked heteromerization of glutamate N-methyl-d-aspartate receptors (NMDAR) with dopamine receptor 1 (D1R) or 2 (D2R). Using temporally controlled inhibition of D1R-NMDAR heteromerization, we unraveled their selective implication in early phases of cocaine-mediated synaptic, morphological, and behavioral responses. In contrast, preventing D2R-NMDAR heteromerization blocked the persistence of these adaptations. Interfering with these heteromers spared natural reward processing. Notably, we established that D2R-NMDAR complexes exist in human samples and showed that, despite a decreased D2R protein expression in the NAc, individuals with psychostimulant use disorder display a higher proportion of D2R forming heteromers with NMDAR. These findings contribute to a better understanding of molecular mechanisms underlying addiction and uncover D2R-NMDAR heteromers as targets with potential therapeutic value.

7.
EMBO Rep ; 22(12): e51882, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34661342

RESUMO

We show here that the transcription factor Npas4 is an important regulator of medium spiny neuron spine density and electrophysiological parameters and that it determines the magnitude of cocaine-induced hyperlocomotion in mice. Npas4 is induced by synaptic stimuli that cause calcium influx, but not dopaminergic or PKA-stimulating input, in mouse medium spiny neurons and human iPSC-derived forebrain organoids. This induction is independent of ubiquitous kinase pathways such as PKA and MAPK cascades, and instead depends on calcineurin and nuclear calcium signalling. Npas4 controls a large regulon containing transcripts for synaptic molecules, such as NMDA receptors and VDCC subunits, and determines in vivo MSN spine density, firing rate, I/O gain function and paired-pulse facilitation. These functions at the molecular and cellular levels control the locomotor response to drugs of abuse, as Npas4 knockdown in the nucleus accumbens decreases hyperlocomotion in response to cocaine in male mice while leaving basal locomotor behaviour unchanged.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Accumbens/metabolismo
8.
Neuropharmacology ; 190: 108534, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33781778

RESUMO

Stress has been acknowledged as one of the main risk factors for the onset of psychiatric disorders. Social stress is the most common type of stressor encountered in our daily lives. Uncovering the molecular determinants of the effect of stress on the brain would help understanding the complex maladaptations that contribute to pathological stress-related mental states. We examined molecular changes in the reward system following social defeat stress in mice, as increasing evidence implicates this system in sensing stressful stimuli. Following acute or chronic social defeat stress, the activation (i.e. phosphorylation) of extracellular signal-regulated kinases ERK1 and ERK2 (pERK1/2), markers of synaptic plasticity, was monitored in sub-regions of the reward system. We employed pharmacological antagonists and inhibitory DREADD to dissect the sequence of events controlling pERK1/2 dynamics. The nucleus accumbens (NAc) showed marked increases in pERK1/2 following both acute and chronic social stress compared to the dorsal striatum. Increases in pERK1/2 required dopamine D1 receptors and GluN2B-containing NMDA receptors. Paraventricular thalamic glutamatergic inputs to the NAc are required for social stress-induced pERK1/2. The molecular adaptations identified here could contribute to the long-lasting impact of stress on the brain and may be targeted to counteract stress-related psychopathologies.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neostriado/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/metabolismo , Animais , Sistema de Sinalização das MAP Quinases , Camundongos , Núcleos da Linha Média do Tálamo/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Glutamato/metabolismo
9.
Aging Cell ; 19(10): e13243, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33009891

RESUMO

GluN2B subunits of NMDA receptors have been proposed as a target for treating age-related memory decline. They are indeed considered as crucial for hippocampal synaptic plasticity and hippocampus-dependent memory formation, which are both altered in aging. Because a synaptic enrichment in GluN2B is associated with hippocampal LTP in vitro, a similar mechanism is expected to occur during memory formation. We show instead that a reduction of GluN2B synaptic localization induced by a single-session learning in dorsal CA1 apical dendrites is predictive of efficient memorization of a temporal association. Furthermore, synaptic accumulation of GluN2B, rather than insufficient synaptic localization of these subunits, is causally involved in the age-related impairment of memory. These challenging data identify extra-synaptic redistribution of GluN2B-containing NMDAR induced by learning as a molecular signature of memory formation and indicate that modulating GluN2B synaptic localization might represent a useful therapeutic strategy in cognitive aging.


Assuntos
Região CA1 Hipocampal/fisiologia , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Envelhecimento , Humanos
10.
Sci Rep ; 10(1): 6619, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313025

RESUMO

The striatum is critical for cocaine-induced locomotor responses. Although the role of D1 receptor-expressing neurons is established, underlying molecular pathways are not fully understood. We studied the role of Pyk2, a non-receptor, calcium-dependent protein-tyrosine kinase. The locomotor coordination and basal activity of Pyk2 knock-out mice were not altered and major striatal protein markers were normal. Cocaine injection increased Pyk2 tyrosine phosphorylation in mouse striatum. Pyk2-deficient mice displayed decreased locomotor response to acute cocaine injection. In contrast, locomotor sensitization and conditioned place preference were normal. Cocaine-activated ERK phosphorylation, a signaling pathway essential for these late responses, was unaltered. Conditional deletion of Pyk2 in the nucleus accumbens or in D1 neurons reproduced decreased locomotor response to cocaine, whereas deletion of Pyk2 in the dorsal striatum or in A2A receptor-expressing neurons did not. In mice lacking Pyk2 in D1-neurons locomotor response to D1 agonist SKF-81297, but not to an anticholinergic drug, was blunted. Our results identify Pyk2 as a regulator of acute locomotor responses to psychostimulants. They highlight the role of tyrosine phosphorylation pathways in striatal neurons and suggest that changes in Pyk2 expression or activation may alter specific responses to drugs of abuse, or possibly other behavioral responses linked to dopamine action.


Assuntos
Cocaína/efeitos adversos , Quinase 2 de Adesão Focal/metabolismo , Atividade Motora , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Antagonistas Colinérgicos/farmacologia , Condicionamento Clássico , Corpo Estriado/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Deleção de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Biol Psychiatry ; 87(11): 944-953, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31928716

RESUMO

Addiction is characterized by a compulsive pattern of drug seeking and consumption and a high risk of relapse after withdrawal that are thought to result from persistent adaptations within brain reward circuits. Drugs of abuse increase dopamine (DA) concentration in these brain areas, including the striatum, which shapes an abnormal memory trace of drug consumption that virtually highjacks reward processing. Long-term neuronal adaptations of gamma-aminobutyric acidergic striatal projection neurons (SPNs) evoked by drugs of abuse are critical for the development of addiction. These neurons form two mostly segregated populations, depending on the DA receptor they express and their output projections, constituting the so-called direct (D1 receptor) and indirect (D2 receptor) SPN pathways. Both SPN subtypes receive converging glutamate inputs from limbic and cortical regions, encoding contextual and emotional information, together with DA, which mediates reward prediction and incentive values. DA differentially modulates the efficacy of glutamate synapses onto direct and indirect SPN pathways by recruiting distinct striatal signaling pathways, epigenetic and genetic responses likely involved in the transition from casual drug use to addiction. Herein we focus on recent studies that have assessed psychostimulant-induced alterations in a cell-type-specific manner, from remodeling of input projections to the characterization of specific molecular events in each SPN subtype and their impact on long-lasting behavioral adaptations. We discuss recent evidence revealing the complex and concerted action of both SPN populations on drug-induced behavioral responses, as these studies can contribute to the design of future strategies to alleviate specific behavioral components of addiction.


Assuntos
Corpo Estriado , Dopamina , Corpo Estriado/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 116(49): 24840-24851, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744868

RESUMO

Huntington's disease (HD) is a chronic neurodegenerative disorder characterized by a late clinical onset despite ubiquitous expression of the mutant Huntingtin gene (HTT) from birth. Transcriptional dysregulation is a pivotal feature of HD. Yet, the genes that are altered in the prodromal period and their regulators, which present opportunities for therapeutic intervention, remain to be elucidated. Using transcriptional and chromatin profiling, we found aberrant transcription and changes in histone H3K27acetylation in the striatum of R6/1 mice during the presymptomatic disease stages. Integrating these data, we identified the Elk-1 transcription factor as a candidate regulator of prodromal changes in HD. Exogenous expression of Elk-1 exerted beneficial effects in a primary striatal cell culture model of HD, and adeno-associated virus-mediated Elk-1 overexpression alleviated transcriptional dysregulation in R6/1 mice. Collectively, our work demonstrates that aberrant gene expression precedes overt disease onset in HD, identifies the Elk-1 transcription factor as a key regulator linked to early epigenetic and transcriptional changes in HD, and presents evidence for Elk-1 as a target for alleviating molecular pathology in HD.


Assuntos
Epigenômica , Doença de Huntington/genética , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Corpo Estriado/metabolismo , Dependovirus , Modelos Animais de Doenças , Histonas/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas Nucleares/metabolismo
13.
Brain ; 142(8): 2432-2450, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31286142

RESUMO

Dysfunctions in brain cholesterol homeostasis have been extensively related to brain disorders. The main pathway for brain cholesterol elimination is its hydroxylation into 24S-hydroxycholesterol by the cholesterol 24-hydrolase, CYP46A1. Increasing evidence suggests that CYP46A1 has a role in the pathogenesis and progression of neurodegenerative disorders, and that increasing its levels in the brain is neuroprotective. However, the mechanisms underlying this neuroprotection remain to be fully understood. Huntington's disease is a fatal autosomal dominant neurodegenerative disease caused by an abnormal CAG expansion in huntingtin's gene. Among the multiple cellular and molecular dysfunctions caused by this mutation, altered brain cholesterol homeostasis has been described in patients and animal models as a critical event in Huntington's disease. Here, we demonstrate that a gene therapy approach based on the delivery of CYP46A1, the rate-limiting enzyme for cholesterol degradation in the brain, has a long-lasting neuroprotective effect in Huntington's disease and counteracts multiple detrimental effects of the mutated huntingtin. In zQ175 Huntington's disease knock-in mice, CYP46A1 prevented neuronal dysfunctions and restored cholesterol homeostasis. These events were associated to a specific striatal transcriptomic signature that compensates for multiple mHTT-induced dysfunctions. We thus explored the mechanisms for these compensations and showed an improvement of synaptic activity and connectivity along with the stimulation of the proteasome and autophagy machineries, which participate to the clearance of mutant huntingtin (mHTT) aggregates. Furthermore, BDNF vesicle axonal transport and TrkB endosome trafficking were restored in a cellular model of Huntington's disease. These results highlight the large-scale beneficial effect of restoring cholesterol homeostasis in neurodegenerative diseases and give new opportunities for developing innovative disease-modifying strategies in Huntington's disease.


Assuntos
Encéfalo/metabolismo , Colesterol 24-Hidroxilase/uso terapêutico , Colesterol/metabolismo , Terapia Genética , Vetores Genéticos/uso terapêutico , Doença de Huntington/terapia , Fármacos Neuroprotetores/uso terapêutico , Animais , Autofagia , Transporte Axonal , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Células Cultivadas , Córtex Cerebral/fisiopatologia , Colesterol 24-Hidroxilase/genética , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Dependovirus/genética , Endossomos/metabolismo , Técnicas de Introdução de Genes , Vetores Genéticos/genética , Humanos , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiopatologia , Fármacos Neuroprotetores/administração & dosagem , Oxisteróis/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas , Proteínas Tirosina Quinases/fisiologia , Teste de Desempenho do Rota-Rod , Transmissão Sináptica , Transcriptoma
14.
Neuropharmacology ; 152: 42-50, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529032

RESUMO

Drug addiction is a chronic and relapsing disorder that leads to compulsive drug intake despite deleterious consequences. By increasing dopamine (DA) in the mesolimbic system, drugs of abuse hijack the brain reward circuitry, which is critical for the development of enduring behavioral alterations. DA mainly acts onto DA D1 (D1R) and D2 (D2R) receptor subtypes, which are positively and negatively coupled to adenylyl cyclase, respectively. Extensive research has aimed at targeting these receptors for the treatment of addiction, however this often results in unwanted side-effects due to the implication of DA receptors in numerous physiological functions. A growing body of evidence indicates that the physical interaction of DA receptors with other receptors can finely tune their function, making DA receptor heteromers promising targets for more specific treatment strategies. An increasing number of articles highlighted the ability of both D1R and D2R to form heteromers, however, most studies carried out to date stem from observations in heterologous systems and the biological significance of DA receptor heteromers in vivo is only emerging. We focused this review on studies that were able to provide insights into functions on D1R and D2R heteromers in drug-evoked adaptations and discuss the limitations of current approaches to study receptor heteromers in vivo. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Assuntos
Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Humanos , Drogas Ilícitas/farmacocinética , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias
15.
Biochimie ; 153: 70-79, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30107216

RESUMO

Huntington's Disease (HD) is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (mHtt) protein leading to degeneration of striatal neurons. Excitotoxicity, consecutive to overstimulation of N-methyl d-aspartate receptors (NMDARs) has a pivotal role in many neurological disorders including HD. Mutant Htt causes enhanced NMDA sensitivity, alteration of NMDAR expression and localization in neurons. Excitotoxic events initiate neuronal death in numerous ways, including activation of apoptotic cascades. Among the NMDAR subunits involved in glutamatergic-mediated excitotoxicity, GluN2B has been extensively reported. In addition to excitotoxicity, alteration of cholesterol metabolism has been observed in HD, with a decrease of cholesterol precursor synthesis along with an increase of cholesterol accumulation, which is deleterious for neurons. Expression of Cholesterol Hydroxylase enzyme, CYP46A1, which converts cholesterol into 24 S-hydroxycholesterol is down-regulated in HD. We found that CYP46A1 overexpression is beneficial in HD neurons and mouse model, but the mechanisms involved still remain unclear. In this study we addressed the effect of CYP46A1 on NMDAR-mediated excitotoxicity in HD primary neurons and its role in modulating cholesterol and localization of GLUN2B in lipid rafts. We showed that CYP46A1 is protective against NMDAR-mediated excitotoxicity in two different HD neuronal cell models. Cholesterol as well as GluN2B level in lipid raft, are significantly increased by mHtt. Despite a clear effect of CYP46A1 in reducing cholesterol content in lipid raft extracts from wild type neurons, CYP46A1 overexpression in HD neurons could not normalize the increased cholesterol levels in lipid rafts. This study highlights the beneficial role of CYP46A1 against NMDAR-mediated excitotoxicity and gives further insights into the cellular mechanisms underlying CYP46A1-mediated neuroprotection.


Assuntos
Colesterol 24-Hidroxilase/metabolismo , Doença de Huntington/prevenção & controle , Microdomínios da Membrana/metabolismo , N-Metilaspartato/toxicidade , Animais , Colesterol/metabolismo , Corpo Estriado/citologia , Corpo Estriado/enzimologia , Feminino , Homeostase , Humanos , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Masculino , Camundongos , Mutação , Neurônios/enzimologia , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Sci Rep ; 8(1): 11596, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072750

RESUMO

Increasing evidence suggests that pathological hallmarks of chronic degenerative syndromes progressively spread among interconnected brain areas in a disease-specific stereotyped pattern. Functional brain imaging from patients affected by various neurological syndromes such as traumatic brain injury and stroke indicates that the progression of such diseases follows functional connections, rather than simply spreading to structurally adjacent areas. Indeed, initial damage to a given brain area was shown to disrupt the communication in related brain networks. Using cortico-striatal neuronal networks reconstructed in a microfluidic environment, we investigated the role of glutamate signaling in activity-dependent neuronal survival and trans-synaptic degeneration processes. Using a variety of neuronal insults applied on cortical neurons, we demonstrate that acute injuries such as axonal trauma, focal ischemia, or alteration of neuronal rhythms, lead to glutamate-dependent striatal neuron dysfunction. Interestingly, focal pro-oxidant insults or chronic alteration of spontaneous cortical rhythms provoked dysfunction of distant striatal neurons through abnormal glutamate GluN2B-NMDAR-mediated signaling at cortico-striatal synapses. These results indicate that focal alteration of cortical functions can initiate spreading of dysfunction along neuronal pathways in the brain, reminiscent of diaschisis-like processes.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Rede Nervosa/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Animais , Lesões Encefálicas Traumáticas/patologia , Corpo Estriado/patologia , Camundongos , Rede Nervosa/patologia , Sinapses/patologia
17.
Neuropsychopharmacology ; 43(5): 1041-1051, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28905875

RESUMO

The importance of dopamine (DA) neurotransmission is emphasized by its direct implication in several neurological and psychiatric disorders. The DA transporter (DAT), target of psychostimulant drugs, is the key protein that regulates spatial and temporal activity of DA in the synaptic cleft via the rapid reuptake of DA into the presynaptic terminal. There is strong evidence suggesting that DAT-interacting proteins may have a role in its function and regulation. Performing a two-hybrid screening, we identified snapin, a SNARE-associated protein implicated in synaptic transmission, as a new binding partner of the carboxyl terminal of DAT. Our data show that snapin is a direct partner and regulator of DAT. First, we determined the domains required for this interaction in both proteins and characterized the DAT-snapin interface by generating a 3D model. Using different approaches, we demonstrated that (i) snapin is expressed in vivo in dopaminergic neurons along with DAT; (ii) both proteins colocalize in cultured cells and brain and, (iii) DAT and snapin are present in the same protein complex. Moreover, by functional studies we showed that snapin produces a significant decrease in DAT uptake activity. Finally, snapin downregulation in mice produces an increase in DAT levels and transport activity, hence increasing DA concentration and locomotor response to amphetamine. In conclusion, snapin/DAT interaction represents a direct link between exocytotic and reuptake mechanisms and is a potential target for DA transmission modulation.


Assuntos
Anfetamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Camundongos , Modelos Moleculares , Atividade Motora/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Proteínas de Transporte Vesicular/biossíntese
18.
Brain Struct Funct ; 223(2): 913-923, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29027032

RESUMO

The development of addictive behavior is associated with functional and structural plasticity in the mesocorticolimbic pathway. Increased connectivity upon cocaine administration has been inferred from increases in dendritic spine density, but without observations of presynaptic elements. Recently, we established a method that enables analyses of both dendritic spines and glutamatergic boutons and presented evidence that cocaine induces changes in striatal connectivity. As the pharmacological and behavioral effects of cocaine directly implicate dopaminergic neurons and their afferents, a remaining question is whether dopaminergic striatal innervations also undergo structural plasticity. To address this issue, we generated transgenic mice in which the fluorophore tdTomato is expressed under the promoter of the dopamine transporter gene. In these mice, specific labeling of dopaminergic boutons was observed in the striatum. Of note, the accordance of our results for control mice with previous electron microscopy studies confirms that our method can be used to decipher the spatial organization of boutons in relation to dendritic elements. Following repeated cocaine administration that led to behavioral locomotor sensitization, an increased density of dopaminergic boutons was observed 1 day later in the nucleus accumbens shell specifically, and not in other striatal regions. Combined labeling of dopaminergic boutons and striatal dendrites showed that cocaine significantly increased the percentage of dendritic spines associated with a dopaminergic bouton. Our results show that chronic cocaine administration induces structural plasticity of dopaminergic boutons that could participate in dopamine-dependent neuronal adaptations in the striatum.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Dendritos/patologia , Dendritos/ultraestrutura , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/ultraestrutura , Imageamento Tridimensional , Técnicas In Vitro , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terminações Pré-Sinápticas/ultraestrutura , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Estatísticas não Paramétricas , Sinapses/fisiologia , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
19.
Biol Psychiatry ; 82(11): 806-818, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28545678

RESUMO

BACKGROUND: Repeated cocaine exposure produces new spine formation in striatal projection neurons (SPNs) of the nucleus accumbens. However, an acute exposure to cocaine can trigger long-lasting synaptic plasticity in SPNs leading to behavioral alterations. This raises the intriguing question as to whether a single administration of cocaine could enduringly modify striatal connectivity. METHODS: A three-dimensional morphometric analysis of presynaptic glutamatergic boutons and dendritic spines was performed on SPNs 1 hour and 1 week after a single cocaine administration. Time-lapse two-photon microscopy in adult slices was used to determine the precise molecular-events sequence responsible for the rapid spine formation. RESULTS: A single injection triggered a rapid synaptogenesis and persistent increase in glutamatergic connectivity in SPNs from the shell part of the nucleus accumbens, specifically. Synapse formation occurred through clustered growth of active spines contacting pre-existing axonal boutons. Spine growth required extracellular signal-regulated kinase activation, while spine stabilization involved transcription-independent protein synthesis driven by mitogen-activated protein kinase interacting kinase-1, downstream from extracellular signal-regulated kinase. The maintenance of new spines driven by mitogen-activated protein kinase interacting kinase-1 was essential for long-term connectivity changes induced by cocaine in vivo. CONCLUSIONS: Our study originally demonstrates that a single administration of cocaine is able to induce stable synaptic rewiring in the nucleus accumbens, which will likely influence responses to subsequent drug exposure. It also unravels a new functional role for cocaine-induced extracellular signal-regulated kinase pathway independently of nuclear targets. Finally, it reveals that mitogen-activated protein kinase interacting kinase-1 has a pivotal role in cocaine-induced connectivity.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , MAP Quinase Quinase 1/metabolismo , Neurogênese/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Sinapses/fisiologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neostriado/metabolismo , Núcleo Accumbens/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Dopamina D1/metabolismo , Sirolimo/farmacologia , Sinapses/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
20.
Biol Psychiatry ; 81(7): 573-584, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27567310

RESUMO

BACKGROUND: Addiction relies on persistent alterations of neuronal properties, which depends on gene regulation. Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that modulates neuronal plasticity underlying learning and memory. Its role in cocaine-induced neuronal and behavioral adaptations remains elusive. METHODS: Acute cocaine-treated mice were used for quantitative reverse-transcriptase polymerase chain reaction, immunocytochemistry, and confocal imaging from striatum. Live imaging and transfection assays for Arc overexpression were performed from primary cultures. Molecular and behavioral adaptations to cocaine were studied from Arc-deficient mice and their wild-type littermates. RESULTS: Arc messenger RNA and proteins are rapidly induced in the striatum after acute cocaine administration, via an extracellular-signal regulated kinase-dependent de novo protein synthesis. Although detected in dendrites, Arc accumulates in the nucleus in active zones of transcription, where it colocalizes with phospho-Ser10-histone H3, an important component of nucleosomal response. In vitro, Arc overexpression downregulates phospho-Ser10-histone H3 without modifying extracellular-signal regulated kinase phosphorylation in the nucleus. In vivo, Arc-deficient mice display decreased heterochromatin domains, a high RNA-polymerase II activity and enhanced c-Fos expression. These mice presented an exacerbated psychomotor sensitization and conditioned place preference induced by low doses of cocaine. CONCLUSIONS: Cocaine induces the rapid induction of Arc and its nuclear accumulation in striatal neurons. Locally, it alters the nucleosomal response, and acts as a brake on chromatin remodeling and gene regulation. These original observations posit Arc as a major homeostatic modulator of molecular and behavioral responses to cocaine. Thus, modulating Arc levels may provide promising therapeutic approaches in drug addiction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Montagem e Desmontagem da Cromatina , Cocaína/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Histonas/metabolismo , Locomoção/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...