Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 30(9): 1224-1232.e5, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716662

RESUMO

Emerging new variants of SARS-CoV-2 and inevitable acquired drug resistance call for the continued search of new pharmacological targets to fight the potentially fatal infection. Here, we describe the mechanisms by which the E protein of SARS-CoV-2 hijacks the human transcriptional regulator BRD4. We found that SARS-CoV-2 E is acetylated in vivo and co-immunoprecipitates with BRD4 in human cells. Bromodomains (BDs) of BRD4 bind to the C-terminus of the E protein, acetylated by human acetyltransferase p300, whereas the ET domain of BRD4 recognizes the unmodified motif of the E protein. Inhibitors of BRD4 BDs, JQ1 or OTX015, decrease SARS-CoV-2 infectivity in lung bronchial epithelial cells, indicating that the acetyllysine binding function of BDs is necessary for the virus fitness and that BRD4 represents a potential anti-COVID-19 target. Our findings provide insight into molecular mechanisms that contribute to SARS-CoV-2 pathogenesis and shed light on a new strategy to block SARS-CoV-2 infection.


Assuntos
COVID-19 , Proteínas de Ciclo Celular/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Fatores de Transcrição/metabolismo , COVID-19/virologia , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios Proteicos
3.
Mol Biomed ; 3(1): 2, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031886

RESUMO

Mantle cell lymphoma (MCL) is a subtype of non-Hodgkin's lymphoma characterized by poor prognosis. The complexity of MCL pathogenesis arises from aberrant activities of diverse signaling pathways, including BTK, PI3K-AKT-mTOR and MYC-BRD4. Here, we report that MCL-related signaling pathways can be altered by a single small molecule inhibitor, SRX3305. Binding and kinase activities along with resonance changes in NMR experiments reveal that SRX3305 targets both bromodomains of BRD4 and is highly potent in inhibition of the PI3K isoforms α, γ and δ, as well as BTK and the drug-resistant BTK mutant. Preclinical investigations herein reveal that SRX3305 perturbs the cell cycle, promotes apoptosis in MCL cell lines and shows dose dependent anti-proliferative activity in both MCL and drug-resistant MCL cells. Our findings underscore the effectiveness of novel multi-action small molecule inhibitors for potential treatment of MCL.

4.
Biochem J ; 478(19): 3613-3619, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624071

RESUMO

Methylation of lysine residues plays crucial roles in a wide variety of cell signaling processes. While the biological importance of recognition of methylated histones by reader domains in the cell nucleus is well established, the processes associated with methylation of non-histone proteins, particularly in the cytoplasm of the cell, are not well understood. Here, we describe a search for potential methyllysine readers using a rapid structural motif-mining algorithm Erebus, the PDB database, and knowledge of the methyllysine binding mechanisms.


Assuntos
Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Domínios Proteicos , Algoritmos , Citosol/metabolismo , Bases de Dados de Proteínas , Epigênese Genética , Humanos , Metilação , Modelos Moleculares , Ligação Proteica , Processamento de Proteína Pós-Traducional
5.
iScience ; 24(9): 102931, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34557659

RESUMO

Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin's lymphoma and one of the most challenging blood cancers to combat due to frequent relapse after treatment. Here, we developed the first-in-class BTK/PI3K/BRD4 axis inhibitor SRX3262, which simultaneously blocks three interrelated MCL driver pathways - BTK, PI3K-AKT-mTOR and MYC. SRX3262 concomitantly binds to BTK, PI3K, and BRD4, exhibits potent in vitro and in vivo activity against MCL, and overcomes the Ibrutinib resistance resulting from the BTK-C481S mutation. Our results reveal that SRX3262 inhibits IgM-induced BTK and AKT phosphorylation and abrogates binding of BRD4 to MYC loci. SRX3262 promotes c-MYC destabilization, induces cell cycle arrest and apoptosis, and shows antitumor activity in in vivo xenograft models. Together, our study provides mechanistic insights and rationale for the use of the triple BTK/PI3K/BRD4 activity inhibitors as a new approach to treat MCL.

6.
Curr Opin Struct Biol ; 71: 1-6, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33993059

RESUMO

The past two decades have witnessed rapid advances in the identification and characterization of epigenetic readers, capable of recognizing or reading post-translational modifications in histones. More recently, a new set of readers with the ability to interact with the nucleosome through concomitant binding to histones and DNA has emerged. In this review, we discuss mechanistic insights underlying bivalent histone and DNA recognition by newly characterized readers and highlight the importance of binding to DNA for their association with chromatin.


Assuntos
Histonas , Nucleossomos , Cromatina , DNA/genética , Epigênese Genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
7.
Biochemistry ; 60(21): 1630-1641, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008964

RESUMO

The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/fisiologia , DNA Topoisomerases Tipo II/ultraestrutura , Antineoplásicos/química , DNA/química , Dano ao DNA/genética , Dano ao DNA/fisiologia , Eucariotos/genética , Eucariotos/metabolismo , Genoma/genética , Humanos , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Translocação Genética/genética
8.
bioRxiv ; 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33688653

RESUMO

Pathogenic viruses like SARS-CoV-2 and HIV hijack the host molecular machinery to establish infection and survival in infected cells. This has led the scientific community to explore the molecular mechanisms by which SARS-CoV-2 infects host cells, establishes productive infection, and causes life-threatening pathophysiology. Very few targeted therapeutics for COVID-19 currently exist, such as remdesivir. Recently, a proteomic approach explored the interactions of 26 of 29 SARS-CoV-2 proteins with cellular targets in human cells and identified 67 interactions as potential targets for drug development. Two of the critical targets, the bromodomain and extra-terminal domain proteins (BETs): BRD2/BRD4 and mTOR, are inhibited by the dual inhibitory small molecule SF2523 at nanomolar potency. SF2523 is the only known mTOR PI3K-α/(BRD2/BRD4) inhibitor with potential to block two orthogonal pathways necessary for SARS-CoV-2 pathogenesis in human cells. Our results demonstrate that SF2523 effectively blocks SARS-CoV-2 replication in lung bronchial epithelial cells in vitro , showing an IC 50 value of 1.5 µM, comparable to IC 50 value of remdesivir (1.1 µM). Further, we demonstrated that the combination of doses of SF2523 and remdesivir is highly synergistic: it allows for the reduction of doses of SF2523 and remdesivir by 25-fold and 4-fold, respectively, to achieve the same potency observed for a single inhibitor. Because SF2523 inhibits two SARS-CoV-2 driven pathogenesis mechanisms involving BRD2/BRD4 and mTOR signaling, our data suggest that SF2523 alone or in combination with remdesivir could be a novel and efficient therapeutic strategy to block SARS-CoV-2 infection and hence be beneficial in preventing severe COVID-19 disease evolution. ONE SENTENCE SUMMARY: Evidence of in silico designed chemotype (SF2523) targeting PI3K-α/mTOR/BRD4 inhibits SARS-CoV-2 infection and is highly synergistic with remdesivir.

9.
STAR Protoc ; 1(3): 100155, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377049

RESUMO

Since its discovery, several ligands of the ZZ domain have been identified; however, molecular and structural information underlying binding of these ligands remains limited. Here, we describe a protocol for biochemical and structural analysis of the ZZ domain of human E3 ubiquitin ligase HERC2 (HERC2ZZ) and its interaction with its ligands: the N-terminal tails of histone H3 and SUMO1. This methodology could be applied for characterization of binding activities of other histone readers. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020).


Assuntos
Bioquímica/métodos , Ubiquitina-Proteína Ligases/química , Soluções Tampão , Cristalização , Fluorescência , Células HEK293 , Histonas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Peptídeos/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteína SUMO-1/isolamento & purificação , Proteína SUMO-1/metabolismo , Triptofano/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Structure ; 28(11): 1225-1230.e3, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32726574

RESUMO

Human ubiquitin ligase HERC2, a component of the DNA repair machinery, has been linked to neurological diseases and cancer. Here, we show that the ZZ domain of HERC2 (HERC2ZZ) binds to histone H3 tail and tolerates posttranslational modifications commonly present in H3. The crystal structure of the HERC2ZZ:H3 complex provides the molecular basis for this interaction and highlights a critical role of the negatively charged site of HERC2ZZ in capturing of A1 of H3. NMR, mutagenesis, and fluorescence data reveal that HERC2ZZ binds to H3 and the N-terminal tail of SUMO1, a previously reported ligand of HERC2ZZ, with comparable affinities. Like H3, the N-terminal tail of SUMO1 occupies the same negatively charged site of HERC2ZZ in the crystal structure of the complex, although in contrast to H3 it adopts an α-helical conformation. Our data suggest that HERC2ZZ may play a role in mediating the association of HERC2 with chromatin.


Assuntos
Cromatina/química , Histonas/química , Processamento de Proteína Pós-Traducional , Proteína SUMO-1/química , Ubiquitina-Proteína Ligases/química , Sítios de Ligação , Cromatina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Eletricidade Estática , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Nat Commun ; 11(1): 3339, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620764

RESUMO

Chromosomal NUP98-PHF23 translocation is associated with an aggressive form of acute myeloid leukemia (AML) and poor survival rate. Here, we report the molecular mechanisms by which NUP98-PHF23 recognizes the histone mark H3K4me3 and is inhibited by small molecule compounds, including disulfiram that directly targets the PHD finger of PHF23 (PHF23PHD). Our data support a critical role for the PHD fingers of NUP98-PHF23, and related NUP98-KDM5A and NUP98-BPTF fusions in driving leukemogenesis, and demonstrate that blocking this interaction in NUP98-PHF23 expressing AML cells leads to cell death through necrotic and late apoptosis pathways. An overlap of NUP98-KDM5A oncoprotein binding sites and H3K4me3-positive loci at the Hoxa/b gene clusters and Meis1 in ChIP-seq, together with NMR analysis of the H3K4me3-binding sites of the PHD fingers from PHF23, KDM5A and BPTF, suggests a common PHD finger-dependent mechanism that promotes leukemogenesis by this type of NUP98 fusions. Our findings highlight the direct correlation between the abilities of NUP98-PHD finger fusion chimeras to associate with H3K4me3-enriched chromatin and leukemic transformation.


Assuntos
Cromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Doença Aguda , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Cromatina/genética , Dissulfiram/farmacologia , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Dedos de Zinco PHD/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína 2 de Ligação ao Retinoblastoma/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Translocação Genética/efeitos dos fármacos , Translocação Genética/genética
14.
Sci Rep ; 10(1): 12027, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694708

RESUMO

Development of small molecule compounds that target several cancer drivers has shown great therapeutic potential. Here, we developed a new generation of highly potent thienopyranone (TP)-based inhibitors for the BET bromodomains (BDs) of the transcriptional regulator BRD4 that have the ability to simultaneously bind to phosphatidylinositol-3 kinase (PI3K) and/or cyclin-dependent kinases 4/6 (CDK4/6). Analysis of the crystal structures of the complexes, NMR titration experiments and IC50 measurements reveal the molecular basis underlying the inhibitory effects and selectivity of these compounds toward BDs of BRD4. The inhibitors show robust cytotoxic effects in multiple cancer cell lines and induce cell-cycle arrest and apoptosis. We further demonstrate that concurrent disruption of the acetyllysine binding function of BRD4 and the kinase activities of PI3K and CDK4/6 by the TP inhibitor improves efficacy in several cancer models. Together, these findings provide further compelling evidence that these multi-action inhibitors are efficacious and more potent than single inhibitory chemotypes.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Mutações Sintéticas Letais , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas/química , Análise Espectral , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Structure ; 27(6): 1029-1033.e3, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31006586

RESUMO

Microrchidia 3 (MORC3), a human ATPase linked to several autoimmune disorders, has been characterized both as a negative and positive regulator of influenza A virus. Here, we report that the CW domain of MORC3 (MORC3-CW) is targeted by the C-terminal tail of the influenza H3N2 protein NS1. The crystal structure of the MORC3-CW:NS1 complex shows that NS1 occupies the same binding site in CW that is normally occupied by histone H3, a physiological ligand of MORC3-CW. Comparable binding affinities of MORC3-CW to H3 and NS1 peptides and to the adjacent catalytic ATPase domain suggest that the viral protein can compete with the host histone for the association with CW, releasing MORC3 autoinhibition and activating the catalytic function of MORC3. Our structural, biochemical, and cellular analyses suggest that MORC3 might affect the infectivity of influenza virus and therefore has a role in cell immune response.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ligação a DNA/química , Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/metabolismo , Domínios Proteicos , Proteínas não Estruturais Virais/química , Adenosina Trifosfatases/metabolismo , Ligação Competitiva , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/virologia , Modelos Moleculares , Ligação Proteica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
16.
Nat Commun ; 9(1): 4574, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385749

RESUMO

The YEATS domain has been identified as a reader of histone acylation and more recently emerged as a promising anti-cancer therapeutic target. Here, we detail the structural mechanisms for π-π-π stacking involving the YEATS domains of yeast Taf14 and human AF9 and acylated histone H3 peptides and explore DNA-binding activities of these domains. Taf14-YEATS selects for crotonyllysine, forming π stacking with both the crotonyl amide and the alkene moiety, whereas AF9-YEATS exhibits comparable affinities to saturated and unsaturated acyllysines, engaging them through π stacking with the acyl amide. Importantly, AF9-YEATS is capable of binding to DNA, whereas Taf14-YEATS is not. Using a structure-guided approach, we engineered a mutant of Taf14-YEATS that engages crotonyllysine through the aromatic-aliphatic-aromatic π stacking and shows high selectivity for the crotonyl H3K9 modification. Our findings shed light on the molecular principles underlying recognition of acyllysine marks and reveal a previously unidentified DNA-binding activity of AF9-YEATS.


Assuntos
DNA/metabolismo , Código das Histonas , Proteínas Nucleares/metabolismo , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Acetilação , Acilação , Cristalografia por Raios X , DNA/ultraestrutura , Humanos , Lisina/metabolismo , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/ultraestrutura
17.
Bioorg Med Chem Lett ; 28(17): 2961-2968, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006062

RESUMO

Etoposide is an anticancer drug that acts by inducing topoisomerase II-mediated DNA cleavage. Despite its wide use, etoposide is associated with some very serious side-effects including the development of treatment-related acute myelogenous leukemias. Etoposide targets both human topoisomerase IIα and IIß. However, the contributions of the two enzyme isoforms to the therapeutic vs. leukemogenic properties of the drug are unclear. In order to develop an etoposide-based drug with specificity for cancer cells that express an active polyamine transport system, the sugar moiety of the drug has been replaced with a polyamine tail. To analyze the effects of this substitution on the specificity of hybrid molecules toward the two enzyme isoforms, we analyzed the activity of a series of etoposide-polyamine hybrids toward human topoisomerase IIα and IIß. All of the compounds displayed an ability to induce enzyme-mediated DNA cleavage that was comparable to or higher than that of etoposide. Relative to the parent drug, the hybrid compounds displayed substantially higher activity toward topoisomerase IIß than IIα. Modeling studies suggest that the enhanced specificity may result from interactions with Gln778 in topoisomerase IIß. The corresponding residue in the α isoform is a methionine.


Assuntos
Etoposídeo/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Poliaminas/farmacologia , Inibidores da Topoisomerase II/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Etoposídeo/síntese química , Etoposídeo/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Poliaminas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
18.
Trends Biochem Sci ; 43(7): 487-489, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29731341

RESUMO

Polycomb repressive complex 2 (PRC2) is a chief epigenetic regulator. In a new article, Chen et al. describe the crystal structure of the heterotetrameric PRC2 holo complex, which provides important mechanistic insights into the organization of its subunits and the association of PRC2 with chromatin.


Assuntos
Cromatina , Complexo Repressor Polycomb 2/genética , Histonas/genética , Proteínas Repressoras/genética
19.
Nucleic Acids Res ; 46(1): 421-430, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29145630

RESUMO

Yaf9 is an integral part of the NuA4 acetyltransferase and the SWR1 chromatin remodeling complexes. Here, we show that Yaf9 associates with acetylated histone H3 with high preference for H3K27ac. The crystal structure of the Yaf9 YEATS domain bound to the H3K27ac peptide reveals that the sequence C-terminal to K27ac stabilizes the complex. The side chain of K27ac inserts between two aromatic residues, mutation of which abrogates the interaction in vitro and leads in vivo to phenotypes similar to YAF9 deletion, including loss of SWR1-dependent incorporation of variant histone H2A.Z. Our findings reveal the molecular basis for the recognition of H3K27ac by a YEATS reader and underscore the importance of this interaction in mediating Yaf9 function within the NuA4 and SWR1 complexes.


Assuntos
Adenosina Trifosfatases/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histonas/química , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
20.
Mol Cell ; 68(2): 261-262, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053953

RESUMO

Epigenetic marks, including DNA methylation and posttranslational modifications (PTMs) in histones, are important factors in determining the fate of replicating cells. In this issue of Molecular Cell, Ishiyama et al. (2017) reveal yet another layer in a remarkably complex mechanism of maintenance DNA methylation.


Assuntos
Metilação de DNA , Histonas/genética , Processamento de Proteína Pós-Traducional , Ubiquitina , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...