Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(11): 5749-5763, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021118

RESUMO

Diffuse Raman spectroscopy (DIRS) extends the high chemical specificity of Raman scattering to in-depth investigation of thick biological tissues. We present here a novel approach for time-domain diffuse Raman spectroscopy (TD-DIRS) based on a single-pixel detector and a digital micromirror device (DMD) within an imaging spectrometer for wavelength encoding. This overcomes the intrinsic complexity and high cost of detection arrays with ps-resolving time capability. Unlike spatially offset Raman spectroscopy (SORS) or frequency offset Raman spectroscopy (FORS), TD-DIRS exploits the time-of-flight distribution of photons to probe the depth of the Raman signal at a single wavelength with a single source-detector separation. We validated the system using a bilayer tissue-bone mimicking phantom composed of a 1 cm thick slab of silicone overlaying a calcium carbonate specimen and demonstrated a high differentiation of the two Raman signals. We reconstructed the Raman spectra of the two layers, offering the potential for improved and quantitative material analysis. Using a bilayer phantom made of porcine muscle and calcium carbonate, we proved that our system can retrieve Raman peaks even in the presence of autofluorescence typical of biomedical tissues. Overall, our novel TD-DIRS setup proposes a cost-effective and high-performance approach for in-depth Raman spectroscopy in diffusive media.

2.
Sci Adv ; 9(37): eadg6231, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703362

RESUMO

Anticancer therapy screening in vitro identifies additional treatments and improves clinical outcomes. Systematically, although most tested cells respond to cues with apoptosis, an appreciable portion enters a senescent state, a critical condition potentially driving tumor resistance and relapse. Conventional screening protocols would strongly benefit from prompt identification and monitoring of therapy-induced senescent (TIS) cells in their native form. We combined complementary all-optical, label-free, and quantitative microscopy techniques, based on coherent Raman scattering, multiphoton absorption, and interferometry, to explore the early onset and progression of this phenotype, which has been understudied in unperturbed conditions. We identified TIS manifestations as early as 24 hours following treatment, consisting of substantial mitochondrial rearrangement and increase of volume and dry mass, followed by accumulation of lipid vesicles starting at 72 hours. This work holds the potential to affect anticancer treatment research, by offering a label-free, rapid, and accurate method to identify initial TIS in tumor cells.


Assuntos
Neoplasias , Humanos , Prevenção Secundária , Apoptose , Sinais (Psicologia) , Imagem Molecular
4.
Front Chem ; 11: 1213981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426334

RESUMO

The success of chemotherapy and radiotherapy anti-cancer treatments can result in tumor suppression or senescence induction. Senescence was previously considered a favorable therapeutic outcome, until recent advancements in oncology research evidenced senescence as one of the culprits of cancer recurrence. Its detection requires multiple assays, and nonlinear optical (NLO) microscopy provides a solution for fast, non-invasive, and label-free detection of therapy-induced senescent cells. Here, we develop several deep learning architectures to perform binary classification between senescent and proliferating human cancer cells using NLO microscopy images and we compare their performances. As a result of our work, we demonstrate that the most performing approach is the one based on an ensemble classifier, that uses seven different pre-trained classification networks, taken from literature, with the addition of fully connected layers on top of their architectures. This approach achieves a classification accuracy of over 90%, showing the possibility of building an automatic, unbiased senescent cells image classifier starting from multimodal NLO microscopy data. Our results open the way to a deeper investigation of senescence classification via deep learning techniques with a potential application in clinical diagnosis.

5.
J Phys Chem B ; 127(21): 4733-4745, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195090

RESUMO

Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging nonlinear vibrational imaging technique that delivers label-free chemical maps of cells and tissues. In narrowband CARS, two spatiotemporally superimposed picosecond pulses, pump and Stokes, illuminate the sample to interrogate a single vibrational mode. Broadband CARS (BCARS) combines narrowband pump pulses with broadband Stokes pulses to record broad vibrational spectra. Despite recent technological advancements, BCARS microscopes still struggle to image biological samples over the entire Raman-active region (400-3100 cm-1). Here, we demonstrate a robust BCARS platform that answers this need. Our system is based on a femtosecond ytterbium laser at a 1035 nm wavelength and a 2 MHz repetition rate, which delivers high-energy pulses used to produce broadband Stokes pulses by white-light continuum generation in a bulk YAG crystal. Combining such pulses, pre-compressed to sub-20 fs duration, with narrowband pump pulses, we generate a CARS signal with a high (<9 cm-1) spectral resolution in the whole Raman-active window, exploiting both the two-color and three-color excitation mechanisms. Aided by an innovative post-processing pipeline, our microscope allows us to perform high-speed (≈1 ms pixel dwell time) imaging over a large field of view, identifying the main chemical compounds in cancer cells and discriminating tumorous from healthy regions in liver slices of mouse models, paving the way for applications in histopathological settings.


Assuntos
Luz , Microscopia , Animais , Camundongos , Análise Espectral Raman/métodos , Microscopia Óptica não Linear , Lasers
6.
J Cereb Blood Flow Metab ; 43(9): 1601-1611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37113060

RESUMO

Identification of reliable and accessible biomarkers to characterize ischemic stroke patients' prognosis remains a clinical challenge. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are markers of brain injury, detectable in blood by high-sensitive technologies. Our aim was to measure serum NfL and GFAP after stroke, and to evaluate their correlation with functional outcome and the scores in rehabilitation scales at 3-month follow-up. Stroke patients were prospectively enrolled in a longitudinal observational study within 24 hours from symptom onset (D1) and monitored after 7 (D7), 30 ± 3 (M1) and 90 ± 5 (M3) days. At each time-point serum NfL and GFAP levels were measured by Single Molecule Array and correlated with National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), Trunk Control Test (TCT), Functional Ambulation Classification (FAC) and Functional Independence Measure (FIM) scores. Serum NfL and GFAP showed different temporal profiles: NfL increased after stroke with a peak value at D7; GFAP showed an earlier peak at D1. NfL and GFAP concentrations correlated with clinical/rehabilitation outcomes both longitudinally and prospectively. Multivariate analysis revealed that NfL-D7 and GFAP-D1 were independent predictors of 3-month NIHSS, TCT, FAC and FIM scores, with NfL being the biomarker with the best predictive performance.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Proteína Glial Fibrilar Ácida , Filamentos Intermediários , Biomarcadores
7.
Front Bioeng Biotechnol ; 10: 1042680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483771

RESUMO

Bone tissue features a complex microarchitecture and biomolecular composition, which determine biomechanical properties. In addition to state-of-the-art technologies, innovative optical approaches allowing the characterization of the bone in native, label-free conditions can provide new, multi-level insight into this inherently challenging tissue. Here, we exploited multimodal nonlinear optical (NLO) microscopy, including co-registered stimulated Raman scattering, two-photon excited fluorescence, and second-harmonic generation, to image entire vertebrae of murine spine sections. The quantitative nature of these nonlinear interactions allowed us to extract accurate biochemical, morphological, and topological information on the bone tissue and to highlight differences between normal and pathologic samples. Indeed, in a murine model showing bone loss, we observed increased collagen and lipid content as compared to the wild type, along with a decreased craniocaudal alignment of bone collagen fibres. We propose that NLO microscopy can be implemented in standard histopathological analysis of bone in preclinical studies, with the ambitious future perspective to introduce this technique in the clinical practice for the analysis of larger tissue sections.

8.
Opt Express ; 30(17): 30135-30148, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242123

RESUMO

We introduce a broadband coherent anti-Stokes Raman scattering (CARS) microscope based on a 2-MHz repetition rate ytterbium laser generating 1035-nm high-energy (≈µJ level) femtosecond pulses. These features of the driving laser allow producing broadband red-shifted Stokes pulses, covering the whole fingerprint region (400-1800 cm-1), employing supercontinuum generation in a bulk crystal. Our system reaches state-of-the-art acquisition speed (<1 ms/pixel) and unprecedented sensitivity of ≈14.1 mmol/L when detecting dimethyl sulfoxide in water. To further improve the performance of the system and to enhance the signal-to-noise ratio of the CARS spectra, we designed a convolutional neural network for spectral denoising, coupled with a post-processing pipeline to distinguish different chemical species of biological tissues.


Assuntos
Aprendizado Profundo , Análise Espectral Raman , Dimetil Sulfóxido , Água , Itérbio
9.
J Vis Exp ; (185)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35938835

RESUMO

Stimulated Raman scattering (SRS) microscopy is a nonlinear optical technique for label-free chemical imaging. This analytical tool delivers chemical maps at high speed, and high spatial resolution of thin samples by directly interrogating their molecular vibrations. In its standard implementation, SRS microscopy is narrowband and forms images with only a single vibrational frequency at a time. However, this approach not only hinders the chemical specificity of SRS but also neglects the wealth of information encoded within vibrational spectra. These limitations can be overcome by broadband SRS, an implementation capable of extracting a vibrational spectrum per pixel of the image in parallel. This delivers hyperspectral data that, when coupled with chemometric analysis, maximizes the amount of information retrieved from the specimen. Thus, broadband SRS improves the chemical specificity of the system, allowing the quantitative determination of the concentration of the different constituents of a sample. Here, we report a protocol for chemical imaging with broadband SRS microscopy, based on a home-built SRS microscope operating with a custom differential multichannel-lock-in amplifier detection. It discusses the sample preparation, alignment of the SRS apparatus, and chemometric analysis. By acquiring vibrational Raman spectra, the protocol illustrates how to identify different chemical species within a mixture, determining their relative concentrations.


Assuntos
Microscopia Óptica não Linear , Análise Espectral Raman , Microscopia , Microscopia Óptica não Linear/métodos , Análise Espectral Raman/métodos , Vibração
10.
ACS Appl Mater Interfaces ; 14(4): 4811-4822, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060693

RESUMO

Canonical immunoassays rely on highly sensitive and specific capturing of circulating biomarkers by interacting biomolecular baits. In this frame, bioprobe immobilization in spatially discrete three-dimensional (3D) spots onto analytical surfaces by hydrogel encapsulation was shown to provide relevant advantages over conventional two-dimensional (2D) platforms. Yet, the broad application of 3D systems is still hampered by hurdles in matching their straightforward fabrication with optimal functional properties. Herein, we report on a composite hydrogel obtained by combining a self-assembling peptide (namely, Q3 peptide) with low-temperature gelling agarose that is proved to have simple and robust application in the fabrication of microdroplet arrays, overcoming hurdles and limitations commonly associated with 3D hydrogel assays. We demonstrate the real-case scenario feasibility of our 3D system in the profiling of Covid-19 patients' serum IgG immunoreactivity, which showed remarkably improved signal-to-noise ratio over canonical assays in the 2D format and exquisite specificity. Overall, the new two-component hydrogel widens the perspectives of hydrogel-based arrays and represents a step forward towards their routine use in analytical practices.


Assuntos
COVID-19/diagnóstico , Imunoensaio/métodos , Imunoglobulina G/sangue , SARS-CoV-2/isolamento & purificação , Biomarcadores/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Humanos , Hidrogéis/química , Imunoglobulina G/imunologia , Peptídeos/química , Peptídeos/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Sefarose
11.
J Am Chem Soc ; 143(31): 12253-12260, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34320323

RESUMO

Molecular imaging techniques are essential tools for better investigating biological processes and detecting disease biomarkers with improvement of both diagnosis and therapy monitoring. Often, a single imaging technique is not sufficient to obtain comprehensive information at different levels. Multimodal diagnostic probes are key tools to enable imaging across multiple scales. The direct registration of in vivo imaging markers with ex vivo imaging at the cellular level with a single probe is still challenging. Fluorinated (19F) probes have been increasingly showing promising potentialities for in vivo cell tracking by 19F-MRI. Here we present the unique features of a bioorthogonal 19F-probe that enables direct signal correlation of MRI with Raman imaging. In particular, we reveal the ability of PERFECTA, a superfluorinated molecule, to exhibit a remarkable intense Raman signal distinct from cell and tissue fingerprints. Therefore, PERFECTA combines in a single molecule excellent characteristics for both macroscopic in vivo 19F-MRI, across the whole body, and microscopic imaging at tissue and cellular levels by Raman imaging.


Assuntos
Hidrocarbonetos Fluorados/química , Imageamento por Ressonância Magnética , Imagem Molecular , Sondas Moleculares/química , Imagem Corporal Total , Animais , Flúor , Camundongos , Estrutura Molecular , Análise Espectral Raman
12.
Nanomedicine ; 29: 102249, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599162

RESUMO

Sporadic amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease for which there is no validated blood based biomarker. Extracellular vesicles (EVs) have the potential to solve this unmet clinical need. However, due to their heterogeneity and complex chemical composition, EVs are difficult to study. Raman spectroscopy (RS) is an optical method that seems particularly well suited to address this task. In fact, RS provides an overview of the biochemical composition of EVs quickly and virtually without any sample preparation. In this work, we studied by RS small extracellular vesicles (sEVs), large extracellular vesicles (lEVs) and blood plasma of sporadic ALS patients and of a matched cohort of healthy controls. The obtained results highlighted lEVs as a particularly promising biomarker for ALS. In fact, their Raman spectra show that sporadic ALS patients have a different lipid content and less intense bands relative to the aromatic amino acid phenylalanine.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Biomarcadores/sangue , Vesículas Extracelulares/genética , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Espectral Raman
13.
J Crohns Colitis ; 14(11): 1572-1580, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32343792

RESUMO

BACKGROUNDS AND AIMS: There is no accurate and reliable circulating biomarker to diagnose Crohn's disease [CD]. Raman spectroscopy is a relatively new approach that provides information on the biochemical composition of samples in minutes and virtually without any sample preparation. We aimed to test the use of Raman spectroscopy analysis of plasma samples as a potential diagnostic tool for CD. METHODS: We analysed by Raman spectroscopy dry plasma samples obtained from 77 CD patients [CD] and 45 healthy controls [HC]. In the dataset obtained, we analysed spectra differences between CD and HC, as well as among CD patients with different disease behaviours. We also developed a method, based on principal component analysis followed by a linear discrimination analysis [PCA-LDA], for the automatic classification of individuals based on plasma spectra analysis. RESULTS: Compared with HC, the CD spectra were characterised by less intense peaks corresponding to carotenoids [p <10-4] and by more intense peaks corresponding to proteins with ß-sheet secondary structure [p <10-4]. Differences were also found on Raman peaks relative to lipids [p = 0.0007] and aromatic amino acids [p <10-4]. The predictive model we developed was able to classify CD and HC subjects with 83.6% accuracy [sensitivity 80.0% and specificity 85.7%] and F1-score of 86.8%. CONCLUSIONS: Our results indicate that Raman spectroscopy of blood plasma can identify metabolic variations associated with CD and it could be a rapid pre-screening tool to use before further specific evaluation.


Assuntos
Aminoácidos Aromáticos/análise , Doença de Crohn/sangue , Lipídeos/análise , Análise Espectral Raman/métodos , Adulto , Biomarcadores/análise , Doença de Crohn/diagnóstico , Doença de Crohn/epidemiologia , Doença de Crohn/fisiopatologia , Análise Discriminante , Feminino , Humanos , Itália/epidemiologia , Masculino , Valor Preditivo dos Testes , Análise de Componente Principal , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Chemistry ; 26(43): 9459-9465, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32167602

RESUMO

Protein folding quality control in cells requires the activity of a class of proteins known as molecular chaperones. Heat shock protein-90 (Hsp90), a multidomain ATP driven molecular machine, is a prime representative of this family of proteins. Interactions between Hsp90, its co-chaperones, and client proteins have been shown to be important in facilitating the correct folding and activation of clients. Hsp90 levels and functions are elevated in tumor cells. Here, we computationally predict the regions on the native structures of clients c-Abl, c-Src, Cdk4, B-Raf and Glucocorticoid Receptor, that have the highest probability of undergoing local unfolding, despite being ordered in their native structures. Such regions represent potential ideal interaction points with the Hsp90-system. We synthesize mimics spanning these regions and confirm their interaction with partners of the Hsp90 complex (Hsp90, Cdc37 and Aha1) by Nuclear Magnetic Resonance (NMR). Designed mimics selectively disrupt the association of their respective clients with the Hsp90 machinery, leaving unrelated clients unperturbed and causing apoptosis in cancer cells. Overall, selective targeting of Hsp90 protein-protein interactions is achieved without causing indiscriminate degradation of all clients, setting the stage for the development of therapeutics based on specific chaperone:client perturbation.


Assuntos
Carcinógenos/química , Proteínas de Ciclo Celular/química , Chaperoninas/química , Proteínas de Choque Térmico HSP90/química , Chaperonas Moleculares/química , Carcinógenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Dobramento de Proteína
15.
Cancer Res ; 80(8): 1762-1772, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32094303

RESUMO

Breast microcalcifications are a common mammographic finding. Microcalcifications are considered suspicious signs of breast cancer and a breast biopsy is required, however, cancer is diagnosed in only a few patients. Reducing unnecessary biopsies and rapid characterization of breast microcalcifications are unmet clinical needs. In this study, 473 microcalcifications detected on breast biopsy specimens from 56 patients were characterized entirely by Raman mapping and confirmed by X-ray scattering. Microcalcifications from malignant samples were generally more homogeneous, more crystalline, and characterized by a less substituted crystal lattice compared with benign samples. There were significant differences in Raman features corresponding to the phosphate and carbonate bands between the benign and malignant groups. In addition to the heterogeneous composition, the presence of whitlockite specifically emerged as marker of benignity in benign microcalcifications. The whole Raman signature of each microcalcification was then used to build a classification model that distinguishes microcalcifications according to their overall biochemical composition. After validation, microcalcifications found in benign and malignant samples were correctly recognized with 93.5% sensitivity and 80.6% specificity. Finally, microcalcifications identified in malignant biopsies, but located outside the lesion, reported malignant features in 65% of in situ and 98% of invasive cancer cases, respectively, suggesting that the local microenvironment influences microcalcification features. This study confirms that the composition and structural features of microcalcifications correlate with breast pathology and indicates new diagnostic potentialities based on microcalcifications assessment. SIGNIFICANCE: Raman spectroscopy could be a quick and accurate diagnostic tool to precisely characterize and distinguish benign from malignant breast microcalcifications detected on mammography.


Assuntos
Doenças Mamárias/metabolismo , Doenças Mamárias/patologia , Mama/patologia , Calcinose/metabolismo , Calcinose/patologia , Análise Espectral Raman/métodos , Biomarcadores/análise , Biópsia , Mama/química , Carcinoma de Mama in situ/química , Carcinoma de Mama in situ/diagnóstico , Carcinoma de Mama in situ/patologia , Doenças Mamárias/diagnóstico , Neoplasias da Mama/química , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Calcinose/diagnóstico , Fosfatos de Cálcio/análise , Carbonatos/análise , Feminino , Humanos , Fosfatos/análise , Sensibilidade e Especificidade
16.
Anal Chem ; 92(5): 4053-4064, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045217

RESUMO

Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines. As a consequence, the application of SERS in highly regulated environments is still considered risky, and the perception of a poorly reproducible and insufficiently robust analytical technique has persistently retarded its routine implementation. Collaborative trials are a type of interlaboratory study (ILS) frequently performed to ascertain the quality of a single analytical method. The idea of an ILS of quantification with SERS arose within the framework of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics in an effort to overcome the problematic perception of quantitative SERS methods. Here, we report the first interlaboratory SERS study ever conducted, involving 15 laboratories and 44 researchers. In this study, we tried to define a methodology to assess the reproducibility and trueness of a quantitative SERS method and to compare different methods. In our opinion, this is a first important step toward a "standardization" process of SERS protocols, not proposed by a single laboratory but by a larger community.

17.
Surg Oncol ; 30: 141-146, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31500779

RESUMO

BACKGROUND: The oncologic benefit of upfront re-excision of involved margins after breast-conserving surgery in the context of current multimodal clinical management of breast cancer is unclear. The aim of the present study was to assess the 5-years locoregional recurrence (LRR)-free and distant metastases (DM)-free survival probabilities in patients not undergoing re-excision of positive margins after lumpectomy for breast cancer. METHODS: A cohort of 104 patients with positive margins not undergoing re-excision was matched by propensity score with a cohort of 2006 control patients with clear margins after breast-conserving surgery, treated between 2008 and 2018. A multivariate survival analysis was performed accounting for all variables related to LRR and DM, including adjuvant treatments. RESULTS: After adjusting for potential confounders, avoiding to re-excise a positive margin after lumpectomy had no effect on 5-years LRR-free survival probability (HR 0.98, 95%CI 0.36-2.67, p = 0.96) or 5-years DM-free survival probability (HR 0.37, 95%CI 0.08-1.61, p = 0.18). No correlation was found between occurrence of LRR and number of involved margins (HR 1.28, 95%CI 0.10-12.4, Log-rank p = 0.83), or extension of infiltrating disease (HR 1.21, 95%CI 0.20-7.40, Log-rank p = 0.83), but a trend toward higher LRR probability was found for invasive ductal (HR 6.92, 95%CI 0.7-68.8, Log-rank p = 0.10) and invasive lobular cancer (HR 12.95, 95%CI 0.79-213.6, Log-rank p = 0.07) on positive margins. CONCLUSIONS: In the era of multimodal treatment of breast cancer and accurate strategies to reduce the probability of residual disease in the post-lumpectomy cavity, re-excision of positive margins might be omitted in selected patients with low-risk breast cancers.


Assuntos
Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/mortalidade , Carcinoma Intraductal não Infiltrante/mortalidade , Carcinoma Lobular/mortalidade , Margens de Excisão , Mastectomia Segmentar/mortalidade , Recidiva Local de Neoplasia/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/secundário , Carcinoma Ductal de Mama/cirurgia , Carcinoma Intraductal não Infiltrante/secundário , Carcinoma Intraductal não Infiltrante/cirurgia , Carcinoma Lobular/secundário , Carcinoma Lobular/cirurgia , Feminino , Seguimentos , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Invasividade Neoplásica , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Estudos Prospectivos , Reoperação , Estudos Retrospectivos , Taxa de Sobrevida
18.
Eur J Surg Oncol ; 45(10): 1827-1834, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31133371

RESUMO

INTRODUCTION: Autologous fat transfer (AFT) is widely adopted for breast reconstruction, but its long-term oncologic safety is still not clearly established. The aim of the present study was to compare the 10-year loco-regional recurrence (LRR)-free and distant metastases (DM)-free survival probabilities in AFT vs. control patients, also evaluating the impact of AFT in different intrinsic molecular subtypes of breast cancer. MATERIALS AND METHODS: 464 AFT patients were exactly matched with a cohort of 3100 control patients treated between 2007 and 2017. A multivariate survival analysis was performed accounting for all variables related to LRR and DM, including adjuvant/neoadjuvant treatments. End-points were analyzed both overall and in each molecular subtype. RESULTS: LRR occurred in 6.4% of AFT and in 5.0% of control patients (p = 0.42), while DM were observed respectively in 7.7% and 5.4% of cases (p = 0.20). AFT showed no effect on the 10-year LRR-free survival probability (adjusted HR 0.87, 95%CI 0.43-1.76, p = 0.69) or the 10-year DM-free survival probability (adjusted HR 0.82, 95%CI 0.43-1.57, p = 0.55). Luminal A patients treated by AFT showed a decreased LRR-free survival probability (HR 2.38, 95%CI 0.91-6.17, Log-Rank p = 0.07), which was significantly lower than controls after 80 months (Log-Rank p = 0.02). No differences in the 10-year event-free survival probability were found in Luminal B, HER2-positive or triple-negative patients. CONCLUSION: AFT does not increase breast cancer recurrence, with the possible exception of late LRRs for Luminal A patients, but further clinical and preclinical data are required to better clarify this data. The use of AFT should not be discouraged.


Assuntos
Tecido Adiposo/transplante , Neoplasias da Mama/cirurgia , Mamoplastia/métodos , Recidiva Local de Neoplasia/epidemiologia , Neoplasias da Mama/mortalidade , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Incidência , Itália/epidemiologia , Mastectomia , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Fatores de Tempo , Transplante Autólogo , Resultado do Tratamento
19.
Int J Mol Sci ; 20(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871158

RESUMO

Cancer-associated fibroblasts (CAF) are the most abundant cells of the tumor stroma and they critically influence cancer growth through control of the surrounding tumor microenvironment (TME). CAF-orchestrated reactive stroma, composed of pro-tumorigenic cytokines and growth factors, matrix components, neovessels, and deregulated immune cells, is associated with poor prognosis in multiple carcinomas, including breast cancer. Therefore, beyond cancer cells killing, researchers are currently focusing on TME as strategy to fight breast cancer. In recent years, nanomedicine has provided a number of smart delivery systems based on active targeting of breast CAF and immune-mediated overcome of chemoresistance. Many efforts have been made both to eradicate breast CAF and to reshape their identity and function. Nano-strategies for CAF targeting profoundly contribute to enhance chemosensitivity of breast tumors, enabling access of cytotoxic T-cells and reducing immunosuppressive signals. TME rearrangement also includes reorganization of the extracellular matrix to enhance permeability to chemotherapeutics, and nano-systems for smart coupling of chemo- and immune-therapy, by increasing immunogenicity and stimulating antitumor immunity. The present paper reviews the current state-of-the-art on nano-strategies to target breast CAF and TME. Finally, we consider and discuss future translational perspectives of proposed nano-strategies for clinical application in breast cancer.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Fibroblastos Associados a Câncer/efeitos dos fármacos , Nanopartículas/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Animais , Humanos , Linfócitos T Citotóxicos/efeitos dos fármacos
20.
Anal Bioanal Chem ; 411(9): 1873-1885, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30155701

RESUMO

Here we describe a simple approach for the simultaneous detection of multiple microRNAs (miRNAs) using a single nanostructured reagent as surface plasmon resonance imaging (SPRi) enhancer and without using enzymatic reactions, sequence specific enhancers or multiple enhancing steps as normally reported in similar studies. The strategy involves the preparation and optimisation of neutravidin-coated gold nanospheres (nGNSs) functionalised with a previously biotinylated antibody (Ab) against DNA/RNA hybrids. The Ab guarantees the recognition of any miRNA sequence adsorbed on a surface properly functionalised with different DNA probes; at the same time, gold nanoparticles permit to detect this interaction, thus producing enough SPRi signal even at a low ligand concentration. After a careful optimisation of the nanoenhancer and after its characterisation, the final assay allowed the simultaneous detection of four miRNAs with a limit of detection (LOD) of up to 0.5 pM (equal to 275 attomoles in 500 µL) by performing a single enhancing injection. The proposed strategy shows good signal specificity and permits to discriminate wild-type, single- and triple-mutated sequences much better than non-enhanced SPRi. Finally, the method works properly in complex samples (total RNA extracted from blood) as demonstrated by the detection of four miRNAs potentially related to multiple sclerosis used as case study. This proof-of-concept study confirms that the approach provides the possibility to detect a theoretically unlimited number of miRNAs using a simple protocol and an easily prepared enhancing reagent, and may further facilitate the development of affordable multiplexing miRNA screening for clinical purposes.


Assuntos
MicroRNAs/análise , Ressonância de Plasmônio de Superfície/métodos , Adsorção , DNA/química , Enzimas/química , Indicadores e Reagentes/química , Dispositivos Lab-On-A-Chip , Ligantes , Limite de Detecção , MicroRNAs/química , Microscopia Eletrônica de Varredura , Hibridização de Ácido Nucleico , Estudo de Prova de Conceito , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...