Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Commun ; 11(1): 2447, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415081

RESUMO

Despite the abundance of ribonucleoside monophosphates (rNMPs) in DNA, sites of rNMP incorporation remain poorly characterized. Here, by using ribose-seq and Ribose-Map techniques, we built and analyzed high-throughput sequencing libraries of rNMPs derived from mitochondrial and nuclear DNA of budding and fission yeast. We reveal both common and unique features of rNMP sites among yeast species and strains, and between wild type and different ribonuclease H-mutant genotypes. We demonstrate that the rNMPs are not randomly incorporated in DNA. We highlight signatures and patterns of rNMPs, including sites within trinucleotide-repeat tracts. Our results uncover that the deoxyribonucleotide immediately upstream of the rNMPs has a strong influence on rNMP distribution, suggesting a mechanism of rNMP accommodation by DNA polymerases as a driving force of rNMP incorporation. Consistently, we find deoxyadenosine upstream from the most abundant genomic rCMPs and rGMPs. This study establishes a framework to better understand mechanisms of rNMP incorporation in DNA.


Assuntos
Citosina/metabolismo , DNA Fúngico/genética , Desoxiadenosinas/metabolismo , Genoma Fúngico , Guanosina/metabolismo , Ribonucleotídeos/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Bases , Núcleo Celular/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Sequências Repetitivas de Ácido Nucleico/genética , Ribonuclease H/metabolismo , Schizosaccharomyces/genética
2.
PLoS Genet ; 16(2): e1008606, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092052

RESUMO

Over long evolutionary timescales, major changes to the copy number, function, and genomic organization of genes occur, however, our understanding of the individual mutational events responsible for these changes is lacking. In this report, we study the genetic basis of adaptation of two strains of C. elegans to laboratory food sources using competition experiments on a panel of 89 recombinant inbred lines (RIL). Unexpectedly, we identified a single RIL with higher relative fitness than either of the parental strains. This strain also displayed a novel behavioral phenotype, resulting in higher propensity to explore bacterial lawns. Using bulk-segregant analysis and short-read resequencing of this RIL, we mapped the change in exploration behavior to a spontaneous, complex rearrangement of the rcan-1 gene that occurred during construction of the RIL panel. We resolved this rearrangement into five unique tandem inversion/duplications using Oxford Nanopore long-read sequencing. rcan-1 encodes an ortholog to human RCAN1/DSCR1 calcipressin gene, which has been implicated as a causal gene for Down syndrome. The genomic rearrangement in rcan-1 creates two complete and two truncated versions of the rcan-1 coding region, with a variety of modified 5' and 3' non-coding regions. While most copy-number variations (CNVs) are thought to act by increasing expression of duplicated genes, these changes to rcan-1 ultimately result in the reduction of its whole-body expression due to changes in the upstream regions. By backcrossing this rearrangement into a common genetic background to create a near isogenic line (NIL), we demonstrate that both the competitive advantage and exploration behavioral changes are linked to this complex genetic variant. This NIL strain does not phenocopy a strain containing an rcan-1 loss-of-function allele, which suggests that the residual expression of rcan-1 is necessary for its fitness effects. Our results demonstrate how colonization of new environments, such as those encountered in the laboratory, can create evolutionary pressure to modify gene function. This evolutionary mismatch can be resolved by an unexpectedly complex genetic change that simultaneously duplicates and diversifies a gene into two uniquely regulated genes. Our work shows how complex rearrangements can act to modify gene expression in ways besides increased gene dosage.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/genética , Evolução Molecular , Comportamento Exploratório , Aptidão Genética/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Alelos , Animais , Proteínas de Caenorhabditis elegans/genética , Duplicação Gênica , Endogamia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação com Perda de Função , Masculino
3.
Nucleic Acids Res ; 47(1): e5, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30272244

RESUMO

Recent advances in high-throughput sequencing techniques have made it possible to tag ribonucleoside monophosphates (rNMPs) embedded in genomic DNA for sequencing. rNMP sequencing experiments generate large, complex datasets that require efficient, scalable software that can accurately map embedded rNMPs independently of the particular sequencing technique used. Current computational pipelines designed to map rNMPs embedded in genomic DNA are customized for data generated using only one type of rNMP sequencing technique. To standardize the processing and analysis of rNMP sequencing experiments, we developed Ribose-Map. Through a series of analytical modules, Ribose-Map transforms raw sequencing data into summary datasets and publication-ready visualizations of results, allowing biologists to identify sites of embedded rNMPs, study the nucleotide sequence context of these rNMPs and explore their genome-wide distribution. By accommodating data from any of the available rNMP sequencing techniques, Ribose-Map can increase the reproducibility of rNMP sequencing experiments and enable a head-to-head comparison of these experiments.


Assuntos
Ribonucleotídeos/genética , Ribose/genética , Saccharomyces cerevisiae/genética , Software , Sequência de Bases/genética , Biologia Computacional/métodos , DNA/genética , Genoma Fúngico/genética , Genômica , Humanos
4.
Bioinformatics ; 34(10): 1659-1665, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29186321

RESUMO

Motivation: The standard protocol for detecting variation in DNA is to map millions of short sequence reads to a known reference and find loci that differ. While this approach works well, it cannot be applied where the sample contains dense variants or is too distant from known references. De novo assembly or hybrid methods can recover genomic variation, but the cost of computation is often much higher. We developed a novel k-mer algorithm and software implementation, Kestrel, capable of characterizing densely packed SNPs and large indels without mapping, assembly or de Bruijn graphs. Results: When applied to mosaic penicillin binding protein (PBP) genes in Streptococcus pneumoniae, we found near perfect concordance with assembled contigs at a fraction of the CPU time. Multilocus sequence typing (MLST) with this approach was able to bypass de novo assemblies. Kestrel has a very low false-positive rate when applied to the whole genome, and while Kestrel identified many variants missed by other methods, limitations of a purely k-mer based approach affect overall sensitivity. Availability and implementation: Source code and documentation for a Java implementation of Kestrel can be found at https://github.com/paudano/kestrel. All test code for this publication is located at https://github.com/paudano/kescases. Contact: paudano@gatech.edu or fredrik.vannberg@biology.gatech.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma Bacteriano , Haplótipos , Tipagem de Sequências Multilocus/métodos , Software , Algoritmos , Genômica/métodos , Polimorfismo Genético , Streptococcus pneumoniae/genética
5.
Genome Announc ; 5(6)2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28183758

RESUMO

Plasmodium malariae is a protozoan parasite that can cause human malaria. The simian parasite Plasmodium brasilianum infects New World monkeys from Latin America and is morphologically indistinguishable from P. malariae Here, we report the first full draft genome sequence for P. brasilianum.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28069653

RESUMO

The emergence of Plasmodium falciparum resistance to artemisinin in Southeast Asia threatens malaria control and elimination activities worldwide. Multiple polymorphisms in the P. falciparum kelch gene found in chromosome 13 (Pfk13) have been associated with artemisinin resistance. Surveillance of potential drug resistance loci within a population that may emerge under increasing drug pressure is an important public health activity. In this context, P. falciparum infections from an observational surveillance study in Senegal were genotyped using targeted amplicon deep sequencing (TADS) for Pfk13 polymorphisms. The results were compared to previously reported Pfk13 polymorphisms from around the world. A total of 22 Pfk13 propeller domain polymorphisms were identified in this study, of which 12 have previously not been reported. Interestingly, of the 10 polymorphisms identified in the present study that were also previously reported, all had a different amino acid substitution at these codon positions. Most of the polymorphisms were present at low frequencies and were confined to single isolates, suggesting they are likely transient polymorphisms that are part of naturally evolving parasite populations. The results of this study underscore the need to identify potential drug resistance loci existing within a population, which may emerge under increasing drug pressure.


Assuntos
Proteínas de Ligação a DNA/genética , Resistência a Medicamentos/genética , Proteínas Nucleares/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Antimaláricos/farmacologia , Artemisininas/farmacologia , Monitoramento Epidemiológico , Expressão Gênica , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Epidemiologia Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Senegal , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Rev Biodivers Neotrop ; 6(1): 45-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27668076

RESUMO

OBJECTIVE: Chocó is a state located on the Pacific coast of Colombia that has a majority Afro-Colombian population. The objective of this study was to characterize the genetic ancestry, admixture and diversity of the population of Chocó, Colombia. METHODOLOGY: Genetic variation was characterized for a sample of 101 donors (61 female and 40 male) from the state of Chocó. Genotypes were determined for each individual via the characterization of 610,545 single nucleotide polymorphisms genome-wide. Haplotypes for the uniparental mitochondrial DNA (female) and Y-DNA (male) chromosomes were also determined. These data were used for comparative analyses with a number of worldwide populations, including putative ancestral populations from Africa, the Americas and Europe, along with several admixed American populations. RESULTS: The population of Chocó has predominantly African genetic ancestry (75.8%) with approximately equal parts European (13.4%) and Native American (11.1%) ancestry. Chocó shows relatively high levels of three-way genetic admixture, and far higher levels of Native American ancestry, compared to other New World African populations from the Caribbean and the United States. There is a striking pattern of sex-specific ancestry in Chocó, with Native American admixture along the female lineage and European admixture along the male lineage. The population of Chocó is also characterized by relatively high levels of overall genetic diversity compared to both putative ancestral populations and other admixed American populations. CONCLUSION: These results suggest a unique genetic heritage for the population of Chocó and underscore the profound human genetic diversity that can be found in the region.

8.
Sci Rep ; 6: 24436, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27087234

RESUMO

It is well documented that cells secrete exosomes, which can transfer biomolecules that impact recipient cells' functionality in a variety of physiologic and disease processes. The role of lymphatic drainage and transport of exosomes is as yet unknown, although the lymphatics play critical roles in immunity and exosomes are in the ideal size-range for lymphatic transport. Through in vivo near-infrared (NIR) imaging we have shown that exosomes are rapidly transported within minutes from the periphery to the lymph node by lymphatics. Using an in vitro model of lymphatic uptake, we have shown that lymphatic endothelial cells actively enhanced lymphatic uptake and transport of exosomes to the luminal side of the vessel. Furthermore, we have demonstrated a differential distribution of exosomes in the draining lymph nodes that is dependent on the lymphatic flow. Lastly, through endpoint analysis of cellular distribution of exosomes in the node, we identified macrophages and B-cells as key players in exosome uptake. Together these results suggest that exosome transfer by lymphatic flow from the periphery to the lymph node could provide a mechanism for rapid exchange of infection-specific information that precedes the arrival of migrating cells, thus priming the node for a more effective immune response.


Assuntos
Exossomos/fisiologia , Sistema Linfático/fisiologia , Animais , Linfócitos B/fisiologia , Células Endoteliais/fisiologia , Linfonodos/citologia , Linfonodos/fisiologia , Sistema Linfático/citologia , Vasos Linfáticos/fisiologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
9.
Emerg Infect Dis ; 22(3): 476-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26891230

RESUMO

We used whole-genome sequence typing (WGST) to investigate an outbreak of Sarocladium kiliense bloodstream infections (BSI) associated with receipt of contaminated antinausea medication among oncology patients in Colombia and Chile during 2013-2014. Twenty-five outbreak isolates (18 from patients and 7 from medication vials) and 11 control isolates unrelated to this outbreak were subjected to WGST to elucidate a source of infection. All outbreak isolates were nearly indistinguishable (<5 single-nucleotide polymorphisms), and >21,000 single-nucleotide polymorphisms were identified from unrelated control isolates, suggesting a point source for this outbreak. S. kiliense has been previously implicated in healthcare-related infections; however, the lack of available typing methods has precluded the ability to substantiate point sources. WGST for outbreak investigation caused by eukaryotic pathogens without reference genomes or existing genotyping methods enables accurate source identification to guide implementation of appropriate control and prevention measures.


Assuntos
Antieméticos/efeitos adversos , Surtos de Doenças , Contaminação de Medicamentos , Fungemia/etiologia , Hypocreales , Chile , Colômbia , DNA Fúngico , Fungemia/diagnóstico , Fungemia/microbiologia , Humanos , Hypocreales/genética , Hypocreales/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
Cell ; 152(4): 703-13, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415221

RESUMO

Although several hundred regions of the human genome harbor signals of positive natural selection, few of the relevant adaptive traits and variants have been elucidated. Using full-genome sequence variation from the 1000 Genomes (1000G) Project and the composite of multiple signals (CMS) test, we investigated 412 candidate signals and leveraged functional annotation, protein structure modeling, epigenetics, and association studies to identify and extensively annotate candidate causal variants. The resulting catalog provides a tractable list for experimental follow-up; it includes 35 high-scoring nonsynonymous variants, 59 variants associated with expression levels of a nearby coding gene or lincRNA, and numerous variants associated with susceptibility to infectious disease and other phenotypes. We experimentally characterized one candidate nonsynonymous variant in Toll-like receptor 5 (TLR5) and show that it leads to altered NF-κB signaling in response to bacterial flagellin. PAPERFLICK:


Assuntos
Técnicas Genéticas , Genoma Humano , Estudo de Associação Genômica Ampla , Mutação , Animais , Bactérias/metabolismo , Flagelina/metabolismo , Projeto HapMap , Humanos , NF-kappa B/metabolismo , Locos de Características Quantitativas , Elementos Reguladores de Transcrição , Transdução de Sinais , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
12.
Ann Hum Genet ; 76(6): 454-63, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22834944

RESUMO

Dizygotic (DZ) twinning has a genetic component and is common among sub-Saharan Africans; in The Gambia its frequency is up to 3% of live births. Variation in PTX3, encoding Pentraxin 3, a soluble pattern recognition receptor that plays an important role both in innate immunity and in female fertility, has been associated with resistance to Mycobacterium tuberculosis pulmonary disease and to Pseudomonas aeruginosa infection in cystic fibrosis patients. We tested whether PTX3 variants in Gambian women associate with DZ twinning, by genotyping five PTX3 single nucleotide polymorphisms (SNPs) in 130 sister pairs (96 full sibs and 34 half sibs) who had DZ twins. Two, three and five SNP haplotypes differed in frequency between twinning mothers and those without a history of twinning (from P = 0.006 to 3.03e-06 for two SNP and three SNP haplotypes, respectively). Twinning mothers and West African tuberculosis-controls from a previous study shared several frequent haplotypes. Most importantly, our data are consistent with an independently reported association of PTX3 and female fertility in a sample from Ghana. Taken together, these results indicate that selective pressure on PTX3 variants that affect the innate immune response to infectious agents, could also produce the observed high incidence of DZ twinning in Gambians.


Assuntos
Proteína C-Reativa/genética , Imunidade Inata/genética , Polimorfismo de Nucleotídeo Único , Componente Amiloide P Sérico/genética , Gêmeos Dizigóticos/genética , Alelos , Estudos de Casos e Controles , Cromossomos Humanos Par 3 , Feminino , Gâmbia , Frequência do Gene , Ordem dos Genes , Haplótipos , Humanos , Desequilíbrio de Ligação
13.
Nat Genet ; 44(5): 502-10, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22446964

RESUMO

Trans-acting genetic variants have a substantial, albeit poorly characterized, role in the heritable determination of gene expression. Using paired purified primary monocytes and B cells, we identify new predominantly cell type-specific cis and trans expression quantitative trait loci (eQTLs), including multi-locus trans associations to LYZ and KLF4 in monocytes and B cells, respectively. Additionally, we observe a B cell-specific trans association of rs11171739 at 12q13.2, a known autoimmune disease locus, with IP6K2 (P = 5.8 × 10(-15)), PRIC285 (P = 3.0 × 10(-10)) and an upstream region of CDKN1A (P = 2 × 10(-52)), suggesting roles for cell cycle regulation and peroxisome proliferator-activated receptor γ (PPARγ) signaling in autoimmune pathogenesis. We also find that specific human leukocyte antigen (HLA) alleles form trans associations with the expression of AOAH and ARHGAP24 in monocytes but not in B cells. In summary, we show that mapping gene expression in defined primary cell populations identifies new cell type-specific trans-regulated networks and provides insights into the genetic basis of disease susceptibility.


Assuntos
Linfócitos B/metabolismo , Marcadores Genéticos/genética , Predisposição Genética para Doença , Antígenos HLA/genética , Monócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Alelos , Doenças Autoimunes/etiologia , Linfócitos B/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Monócitos/imunologia , PPAR gama/genética
14.
Nat Genet ; 44(3): 257-9, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22306650

RESUMO

After imputation of data from the 1000 Genomes Project into a genome-wide dataset of Ghanaian individuals with tuberculosis and controls, we identified a resistance locus on chromosome 11p13 downstream of the WT1 gene (encoding Wilms tumor 1). The strongest signal was obtained at the rs2057178 SNP (P = 2.63 × 10(-9)). Replication in Gambian, Indonesian and Russian tuberculosis case-control study cohorts increased the significance level for the association with this SNP to P = 2.57 × 10(-11).


Assuntos
Cromossomos Humanos Par 11/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Tuberculose/genética , Estudos de Casos e Controles , Proteínas de Ciclo Celular , Estudos de Coortes , Genótipo , Gana , Humanos , Modelos Genéticos , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Processamento de RNA
15.
J Immunol ; 186(5): 3058-65, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21282507

RESUMO

Endotoxin tolerance is characterized by the suppression of further TNF release upon recurrent exposure to LPS. This phenomenon is proposed to act as a homeostatic mechanism preventing uncontrolled cytokine release such as that observed in bacterial sepsis. The regulatory mechanisms and interindividual variation of endotoxin tolerance induction in man remain poorly characterized. In this paper, we describe a genetic association study of variation in endotoxin tolerance among healthy individuals. We identify a common promoter haplotype in TNFRSF1B (encoding TNFR2) to be strongly associated with reduced tolerance to LPS (p = 5.82 × 10(-6)). This identified haplotype is associated with increased expression of TNFR2 (p = 4.9 × 10(-5)), and we find basal expression of TNFR2, irrespective of genotype and unlike TNFR1, is associated with secondary TNF release (p < 0.0001). Functional studies demonstrate a positive-feedback loop via TNFR2 of LPS-induced TNF release, confirming this previously unrecognized role for TNFR2 in the modulation of LPS response.


Assuntos
Endotoxinas/farmacologia , Haplótipos , Tolerância Imunológica/genética , Lipopolissacarídeos/farmacologia , Fator 2 Associado a Receptor de TNF/genética , Animais , Células Cultivadas , Estudos de Coortes , Endotoxinas/imunologia , Endotoxinas/metabolismo , Retroalimentação Fisiológica , Marcadores Genéticos , Genótipo , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Macaca , Pan troglodytes , Polimorfismo de Nucleotídeo Único , Pongo , Locos de Características Quantitativas , Fator 2 Associado a Receptor de TNF/biossíntese , Fator 2 Associado a Receptor de TNF/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Immunol Rev ; 240(1): 105-16, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21349089

RESUMO

Intracellular pathogens contribute to a significant proportion of infectious disease morbidity and mortality worldwide. Increasing evidence points to a major role for host genetics in explaining inter-individual variation in susceptibility to infectious diseases. A number of monogenic disorders predisposing to infectious disease have been reported, including susceptibility to intracellular pathogens in association with mutations in genes of the interleukin-12/interleukin-23/interferon-γ axis. Common genetic variants have also been demonstrated to regulate susceptibility to intracellular infection, for example the CCR5Δ32 polymorphism that modulates human immunodeficiency virus-1 (HIV-1) disease progression. Genome-wide association study approaches are being increasingly utilized to define genetic variants underlying susceptibility to major infectious diseases. This review focuses on the current state-of-the-art in genetics and genomics as pertains to understanding the genetic contribution to human susceptibility to infectious diseases caused by intracellular pathogens such as tuberculosis, leprosy, HIV-1, hepatitis, and malaria, with a particular emphasis on insights from recent genome-wide approaches. The results from these studies implicate common genetic variants in novel molecular pathways involved in human immunity to specific pathogens.


Assuntos
Doenças Transmissíveis/genética , Doenças Transmissíveis/imunologia , Predisposição Genética para Doença , Doenças Transmissíveis/fisiopatologia , Infecções por HIV/genética , Hepatite/genética , Humanos , Hanseníase/genética , Malária/genética , Tuberculose/genética , Viroses/genética
17.
Crit Care ; 14(6): R227, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21171993

RESUMO

INTRODUCTION: Streptococcus pneumoniae remains a major global health problem and a leading cause of death in children worldwide. The factors that influence development of pneumococcal sepsis remain poorly understood, although increasing evidence points towards a role for genetic variation in the host's immune response. Recent insights from the study of animal models, rare human primary immunodeficiency states, and population-based genetic epidemiology have focused attention on the role of the proinflammatory transcription factor NF-κB in pneumococcal disease pathogenesis. The possible role of genetic variation in the atypical NF-κB inhibitor IκB-R, encoded by NFKBIL2, in susceptibility to invasive pneumococcal disease has not, to our knowledge, previously been reported upon. METHODS: An association study was performed examining the frequencies of nine common NFKBIL2 polymorphisms in two invasive pneumococcal disease case-control groups: European individuals from hospitals in Oxfordshire, UK (275 patients and 733 controls), and African individuals from Kilifi District Hospital, Kenya (687 patients with bacteraemia, of which 173 patients had pneumococcal disease, together with 550 controls). RESULTS: Five polymorphisms significantly associated with invasive pneumococcal disease susceptibility in the European study, of which two polymorphisms also associated with disease in African individuals. Heterozygosity at these loci was associated with protection from invasive pneumococcal disease (rs760477, Mantel-Haenszel 2 × 2 χ(2) = 11.797, P = 0.0006, odds ratio = 0.67, 95% confidence interval = 0.53 to 0.84; rs4925858, Mantel-Haenszel 2 × 2 χ(2) = 9.104, P = 0.003, odds ratio = 0.70, 95% confidence interval = 0.55 to 0.88). Linkage disequilibrium was more extensive in European individuals than in Kenyans. CONCLUSIONS: Common NFKBIL2 polymorphisms are associated with susceptibility to invasive pneumococcal disease in European and African populations. These findings further highlight the importance of control of NF-κB in host defence against pneumococcal disease.


Assuntos
Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , NF-kappa B/genética , Infecções Pneumocócicas/genética , Polimorfismo Genético/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Ligação Genética/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Infecções Pneumocócicas/diagnóstico , Adulto Jovem
18.
Nat Genet ; 42(9): 739-741, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20694014

RESUMO

We combined two tuberculosis genome-wide association studies from Ghana and The Gambia with subsequent replication in a combined 11,425 individuals. rs4331426, located in a gene-poor region on chromosome 18q11.2, was associated with disease (combined P = 6.8 x 10(-9), odds ratio = 1.19, 95% CI = 1.13-1.27). Our study demonstrates that genome-wide association studies can identify new susceptibility loci for infectious diseases, even in African populations, in which levels of linkage disequilibrium are particularly low.


Assuntos
Cromossomos Humanos Par 18 , Loci Gênicos , Predisposição Genética para Doença , Tuberculose/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 18/genética , Gâmbia , Genética Populacional , Estudo de Associação Genômica Ampla , Gana , Humanos , Desequilíbrio de Ligação , Razão de Chances , Polimorfismo de Nucleotídeo Único
19.
PLoS Pathog ; 6: e1000979, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617178

RESUMO

Leprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.7 x 10(-8), OR = 0.31, 95% CI = 0.20-0.48, and HLA-DQA1 rs1071630, case-control P = 4.9 x 10(-14), OR = 0.43, 95% CI = 0.35-0.54). The effect sizes of these associations suggest that TLR1 and HLA-DRB1/DQA1 are major susceptibility genes in susceptibility to leprosy. Further population differentiation analysis shows that the TLR1 locus is extremely differentiated. The protective dysfunctional 602S allele is rare in Africa but expands to become the dominant allele among individuals of European descent. This supports the hypothesis that this locus may be under selection from mycobacteria or other pathogens that are recognized by TLR1 and its co-receptors. These observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases.


Assuntos
Predisposição Genética para Doença/genética , Antígenos HLA-DR/genética , Hanseníase/genética , Receptor 1 Toll-Like/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Cadeias alfa de HLA-DQ , Cadeias HLA-DRB1 , Humanos , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Receptor 1 Toll-Like/imunologia
20.
N Engl J Med ; 362(22): 2092-101, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20484391

RESUMO

BACKGROUND: The interleukin-2-mediated immune response is critical for host defense against infectious pathogens. Cytokine-inducible SRC homology 2 (SH2) domain protein (CISH), a suppressor of cytokine signaling, controls interleukin-2 signaling. METHODS: Using a case-control design, we tested for an association between CISH polymorphisms and susceptibility to major infectious diseases (bacteremia, tuberculosis, and severe malaria) in blood samples from 8402 persons in Gambia, Hong Kong, Kenya, Malawi, and Vietnam. We had previously tested 20 other immune-related genes in one or more of these sample collections. RESULTS: We observed associations between variant alleles of multiple CISH polymorphisms and increased susceptibility to each infectious disease in each of the study populations. When all five single-nucleotide polymorphisms (SNPs) (at positions -639, -292, -163, +1320, and +3415 [all relative to CISH]) within the CISH-associated locus were considered together in a multiple-SNP score, we found an association between CISH genetic variants and susceptibility to bacteremia, malaria, and tuberculosis (P=3.8x10(-11) for all comparisons), with -292 accounting for most of the association signal (P=4.58x10(-7)). Peripheral-blood mononuclear cells obtained from adult subjects carrying the -292 variant, as compared with wild-type cells, showed a muted response to the stimulation of interleukin-2 production--that is, 25 to 40% less CISH expression. CONCLUSIONS: Variants of CISH are associated with susceptibility to diseases caused by diverse infectious pathogens, suggesting that negative regulators of cytokine signaling have a role in immunity against various infectious diseases. The overall risk of one of these infectious diseases was increased by at least 18% among persons carrying the variant CISH alleles.


Assuntos
Bacteriemia/genética , Predisposição Genética para Doença , Malária/genética , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras da Sinalização de Citocina/genética , Tuberculose/genética , Adulto , Estudos de Casos e Controles , Criança , Expressão Gênica , Genótipo , Humanos , Interleucina-2/fisiologia , Desequilíbrio de Ligação , Razão de Chances , Risco , Proteínas Supressoras da Sinalização de Citocina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...