Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(6): e5036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801230

RESUMO

Reactive intermediate deaminase A (RidA) is a highly conserved enzyme that catalyzes the hydrolysis of 2-imino acids to the corresponding 2-keto acids and ammonia. RidA thus prevents the accumulation of such potentially harmful compounds in the cell, as exemplified by its role in the degradation of 2-aminoacrylate, formed during the metabolism of cysteine and serine, catalyzing the conversion of its stable 2-iminopyruvate tautomer into pyruvate. Capra hircus (goat) RidA (ChRidA) was the first mammalian RidA to be isolated and described. It has the typical homotrimeric fold of the Rid superfamily, characterized by remarkably high thermal stability, with three active sites located at the interface between adjacent subunits. ChRidA exhibits a broad substrate specificity with a preference for 2-iminopyruvate and other 2-imino acids derived from amino acids with non-polar non-bulky side chains. Here we report a biophysical and biochemical characterization of eight ChRidA variants obtained by site-directed mutagenesis to gain insight into the role of specific residues in protein stability and catalytic activity. Each mutant was produced in Escherichia coli cells, purified and characterized in terms of quaternary structure, thermal stability and substrate specificity. The results are rationalized in the context of the high-resolution structures obtained by x-ray crystallography.


Assuntos
Estabilidade Enzimática , Mutagênese Sítio-Dirigida , Animais , Especificidade por Substrato , Modelos Moleculares , Domínio Catalítico
2.
Biology (Basel) ; 12(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626935

RESUMO

Histone deacetylases (HDACs) participate with histone acetyltransferases in the modulation of the biological activity of a broad array of proteins, besides histones. Histone deacetylase 6 is unique among HDAC as it contains two catalytic domains, an N-terminal microtubule binding region and a C-terminal ubiquitin binding domain. Most of its known biological roles are related to its protein lysine deacetylase activity in the cytoplasm. The design of specific inhibitors is the focus of a large number of medicinal chemistry programs in the academy and industry because lowering HDAC6 activity has been demonstrated to be beneficial for the treatment of several diseases, including cancer, and neurological and immunological disorders. Here, we show how re-evaluation of the mechanism of action of selected HDAC6 inhibitors, by monitoring the time-dependence of the onset and relief of the inhibition, revealed instances of slow-binding/slow-release inhibition. The same approach, in conjunction with X-ray crystallography, in silico modeling and mass spectrometry, helped to propose a model of inhibition of HDAC6 by a novel difluoromethyloxadiazole-based compound that was found to be a slow-binding substrate analog of HDAC6, giving rise to a tightly bound, long-lived inhibitory derivative.

3.
Methods Mol Biol ; 2675: 237-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258768

RESUMO

Protocols to assay the activity of glutamine synthetase (GS) are presented as they have been used in our laboratory to correlate the expression levels of the gene encoding Drosophila GS1 gene, the GS1 protein levels, and its activity in extracts of larvae and heads from Drosophila melanogaster. The assays are based on the glutamine synthetase-catalyzed formation of γ-glutamylhydroxylamine in the presence of ATP, L-glutamate, and hydroxylamine, in which hydroxylamine substitutes for ammonia in the reaction. Formation of γ-glutamylhydroxylamine is monitored spectrophotometrically in discontinuous assays upon complex formation with FeCl3. Fixed-time assays and those based on monitoring the time-course of product formation at different reaction times are described. The protocols can be adapted to quantify glutamine synthetase activity on biological materials other than Drosophila.


Assuntos
Drosophila melanogaster , Glutamato-Amônia Ligase , Animais , Drosophila melanogaster/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Ligases , Drosophila/metabolismo , Ácido Glutâmico , Glutamina
4.
J Biol Chem ; 299(1): 102800, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528061

RESUMO

Histone deacetylase 6 (HDAC6) is an attractive drug development target because of its role in the immune response, neuropathy, and cancer. Knockout mice develop normally and have no apparent phenotype, suggesting that selective inhibitors should have an excellent therapeutic window. Unfortunately, current HDAC6 inhibitors have only moderate selectivity and may inhibit other HDAC subtypes at high concentrations, potentially leading to side effects. Recently, substituted oxadiazoles have attracted attention as a promising novel HDAC inhibitor chemotype, but their mechanism of action is unknown. Here, we show that compounds containing a difluoromethyl-1,3,4-oxadiazole (DFMO) moiety are potent and single-digit nanomolar inhibitors with an unprecedented greater than 104-fold selectivity for HDAC6 over all other HDAC subtypes. By combining kinetics, X-ray crystallography, and mass spectrometry, we found that DFMO derivatives are slow-binding substrate analogs of HDAC6 that undergo an enzyme-catalyzed ring opening reaction, forming a tight and long-lived enzyme-inhibitor complex. The elucidation of the mechanism of action of DFMO derivatives paves the way for the rational design of highly selective inhibitors of HDAC6 and possibly of other HDAC subtypes as well with potentially important therapeutic implications.


Assuntos
Histona Desacetilases , Oxidiazóis , Animais , Camundongos , Desacetilase 6 de Histona/química , Histona Desacetilases/genética , Oxidiazóis/farmacologia , Camundongos Knockout , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Histona Desacetilase 1
5.
Biochem Biophys Res Commun ; 616: 70-75, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35640488

RESUMO

The Reactive intermediate deiminase (Rid) protein family is a group of enzymes widely distributed in all Kingdoms of Life. RidA is one of the eight known Rid subfamilies, and its members act by preventing the accumulation of 2-aminoacrylate, a highly reactive enamine generated during the metabolism of some amino acids, by hydrolyzing the 2-iminopyruvate tautomer to pyruvate and ammonia. RidA members are homotrimers exhibiting a remarkable thermal stability. Recently, a novel subclass of RidA was identified in teleosts, which differs for stability and substrate specificity from the canonical RidA. In this study we structurally and functionally characterized RidA from Apis mellifera (AmRidA) as the first example of an invertebrate RidA to assess its belonging to the canonical RidA group, and to further correlate structural and functional features of this novel enzyme class. Circular dichroism revealed a spectrum typical of the RidA proteins and the high thermal stability. AmRidA exhibits the 2-imino acid hydrolase activity typical of RidA family members with a substrate specificity similar to that of the canonical RidA. The crystal structure confirmed the homotrimeric assembly and the presence of the typical structural features of RidA proteins, such as the proposed substrate recognition loop, and the ß-sheets ß1-ß9 and ß1-ß2. In conclusion, our data define AmRidA as a canonical member of the well-conserved RidA family and further clarify the diagnostic structural features of this class of enzymes.


Assuntos
Iminas , Scrapie , Aminoácidos , Aminoidrolases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Abelhas , Ovinos
6.
Open Biol ; 11(5): 210010, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947244

RESUMO

Iron-sulfur (Fe-S) flavoproteins form a broad and growing class of complex, multi-domain and often multi-subunit proteins coupling the most ancient cofactors (the Fe-S clusters) and the most versatile coenzymes (the flavin coenzymes, FMN and FAD). These enzymes catalyse oxidoreduction reactions usually acting as switches between donors of electron pairs and acceptors of single electrons, and vice versa. Through selected examples, the enzymes' structure-function relationships with respect to rate and directionality of the electron transfer steps, the role of the apoprotein and its dynamics in modulating the electron transfer process will be discussed.


Assuntos
Evolução Molecular , Flavinas/química , Flavoproteínas/química , Proteínas Ferro-Enxofre/química , Flavinas/metabolismo , Flavoproteínas/metabolismo , Proteínas Ferro-Enxofre/metabolismo
7.
Methods Mol Biol ; 2280: 199-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751437

RESUMO

This chapter describes a method to assay the activity of reactive intermediate deaminases (Rid), a large family of conserved soluble enzymes, which have been proposed to prevent damages from metabolic intermediates such as the highly reactive and unstable compounds enamines/imines. In this method, the flavin adenine dinucleotide-dependent L- or D-amino acid oxidases generate an imino acid starting from a L- or D- amino acid, respectively. This reaction is coupled to the hydrolysis of the imino acid to the corresponding α-keto acid and ammonium ion catalyzed by a Rid enzyme. The spectrophotometric assay consists of measuring the decrease of the initial rate of formation of the semicarbazone, derived from the spontaneous reaction of the imino acid and semicarbazide, caused by the presence of the Rid enzyme. The set-up and testing of this method imply a preliminary characterization of the ability of the amino acid oxidase to release the imino acid required for the subsequent reactions. To this purpose, the activity of the L- or D-amino acid oxidases with different amino acids can be measured as production of hydrogen peroxide or formation of semicarbazone in parallel assays. The advantages and limitations of this assay of Rid activity are discussed.


Assuntos
D-Aminoácido Oxidase/metabolismo , Iminoácidos/análise , L-Aminoácido Oxidase/metabolismo , Peróxido de Hidrogênio/análise , Hidrólise , Iminoácidos/metabolismo
8.
Sci Rep ; 10(1): 10135, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576850

RESUMO

Reactive Intermediate Deaminase (Rid) protein superfamily includes eight families among which the RidA is conserved in all domains of life. RidA proteins accelerate the deamination of the reactive 2-aminoacrylate (2AA), an enamine produced by some pyridoxal phosphate (PLP)-dependent enzymes. 2AA accumulation inhibits target enzymes with a detrimental impact on fitness. As a consequence of whole genome duplication, teleost fish have two ridA paralogs, while other extant vertebrates contain a single-copy gene. We investigated the biochemical properties of the products of two paralogs, identified in Salmo salar. SsRidA-1 and SsRidA-2 complemented the growth defect of a Salmonella enterica ridA mutant, an in vivo model of 2AA stress. In vitro, both proteins hydrolyzed 2-imino acids (IA) to keto-acids and ammonia. SsRidA-1 was active on IA derived from nonpolar amino acids and poorly active or inactive on IA derived from other amino acids tested. In contrast, SsRidA-2 had a generally low catalytic efficiency, but showed a relatively higher activity with IA derived from L-Glu and aromatic amino acids. The crystal structures of SsRidA-1 and SsRidA-2 provided hints of the remarkably different conformational stability and substrate specificity. Overall, SsRidA-1 is similar to the mammalian orthologs whereas SsRidA-2 displays unique properties likely generated by functional specialization of a duplicated ancestral gene.


Assuntos
Aminoidrolases/genética , Aminoidrolases/metabolismo , Iminas/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Acrilatos/metabolismo , Aminoidrolases/química , Animais , Catálise , Cristalização , Desaminação/genética , Técnicas In Vitro , Família Multigênica , Mutação , Fosfato de Piridoxal/metabolismo , Salmonella enterica/genética
9.
ACS Chem Biol ; 15(7): 1795-1800, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32589395

RESUMO

Cardiac senescence is a typical chronic frailty condition in the elderly population, and cellular aging is often associated with oxidative stress. The mitochondrial-membrane flavoenzyme monoamine oxidase A (MAO A) catalyzes the oxidative deamination of neurotransmitters, and its expression increases in aged hearts. We produced recombinant human MAO A variants at Lys305 that play a key role in O2 reactivity leading to H2O2 production. The K305Q variant is as active as the wild-type enzyme, whereas K305M and K305S have 200-fold and 100-fold lower kcat values and similar Km. Under anaerobic conditions, K305M MAO A was normally reduced by substrate, whereas reoxidation by O2 was much slower but could be accomplished by quinone electron acceptors. When overexpressed in cardiomyoblasts by adenoviral vectors, the K305M variant showed enzymatic turnover similar to that of the wild-type but displayed decreased ROS levels and senescence markers. These results might translate into pharmacological treatments as MAO inhibitors may attenuate cardiomyocytes aging.


Assuntos
Envelhecimento/metabolismo , Senescência Celular/fisiologia , Peróxido de Hidrogênio/metabolismo , Monoaminoxidase/metabolismo , Miocárdio/metabolismo , Animais , Linhagem Celular , Humanos , Lisina/genética , Monoaminoxidase/genética , Mutação , Mioblastos Cardíacos/metabolismo , Engenharia de Proteínas , Ratos
10.
J Mol Biol ; 431(22): 4523-4526, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31473159

RESUMO

Bacterial NADPH-dependent glutamate synthase (GltS) is a complex iron-sulfur flavoprotein that catalyzes the reductive synthesis of two L-Glu molecules from L-Gln and 2-oxo-glutarate. GltS functional unit hosts an α-subunit (αGltS) and a ß-subunit (ßGltS) that assemble in different αß oligomers in solution. Here, we present the cryo-electron microscopy structures of Azospirillum brasilense GltS in four different oligomeric states (α4ß3, α4ß4, α6ß4 and α6ß6, in the 3.5- to 4.1-Å resolution range). Our study provides a comprehensive GltS model that details the inter-protomeric assemblies and allows unequivocal location of the FAD cofactor and of two electron transfer [4Fe-4S]+1,+2 clusters within ßGltS.


Assuntos
Azospirillum brasilense/enzimologia , Microscopia Crioeletrônica/métodos , Glutamato Sintase/metabolismo , Glutamato Sintase/ultraestrutura , Catálise , Transporte de Elétrons , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/ultraestrutura
11.
Int J Mol Sci ; 19(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565811

RESUMO

Reactive intermediate deaminase (Rid) protein family is a recently discovered group of enzymes that is conserved in all domains of life and is proposed to play a role in the detoxification of reactive enamines/imines. UK114, the mammalian member of RidA subfamily, was identified in the early 90s as a component of perchloric acid-soluble extracts from goat liver and exhibited immunomodulatory properties. Multiple activities were attributed to this protein, but its function is still unclear. This work addressed the question of whether UK114 is a Rid enzyme. Biochemical analyses demonstrated that UK114 hydrolyzes α-imino acids generated by l- or d-amino acid oxidases with a preference for those deriving from Ala > Leu = l-Met > l-Gln, whereas it was poorly active on l-Phe and l-His. Circular Dichroism (CD) analyses of UK114 conformational stability highlighted its remarkable resistance to thermal unfolding, even at high urea concentrations. The half-life of heat inactivation at 95 °C, measured from CD and activity data, was about 3.5 h. The unusual conformational stability of UK114 could be relevant in the frame of a future evaluation of its immunogenic properties. In conclusion, mammalian UK114 proteins are RidA enzymes that may play an important role in metabolism homeostasis also in these organisms.


Assuntos
Aminoidrolases/metabolismo , Salmonella enterica/metabolismo , Aminoácido Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Conformação Molecular
12.
Arch Biochem Biophys ; 632: 118-141, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602956

RESUMO

MICAL (from the Molecule Interacting with CasL) indicates a family of multidomain proteins conserved from insects to humans, which are increasingly attracting attention for their participation in the control of actin cytoskeleton dynamics, and, therefore, in the several related key processes in health and disease. MICAL is unique among actin binding proteins because it catalyzes a NADPH-dependent F-actin depolymerizing reaction. This unprecedented reaction is associated with its N-terminal FAD-containing domain that is structurally related to p-hydroxybenzoate hydroxylase, the prototype of aromatic monooxygenases, but catalyzes a strong NADPH oxidase activity in the free state. This review will focus on the known structural and functional properties of MICAL forms in order to provide an overview of the arguments supporting the current hypotheses on the possible mechanism of action of MICAL in the free and F-actin bound state, on the modulating effect of the CH, LIM, and C-terminal domains that follow the catalytic flavoprotein domain on the MICAL activities, as well as that of small molecules and proteins interacting with MICAL.


Assuntos
Citoesqueleto de Actina , Actinas , Proteínas Adaptadoras de Transdução de Sinal , Proteínas do Citoesqueleto , Flavoproteínas , Proteínas com Domínio LIM , Oxigenases de Função Mista , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Flavoproteínas/química , Flavoproteínas/metabolismo , Humanos , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/metabolismo , Proteínas dos Microfilamentos , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , NADP/química , NADP/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
13.
BMC Genomics ; 17: 482, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27411447

RESUMO

BACKGROUND: The cell wall is essential for the yeast to hypha (Y-H) transition that enables Candida albicans to invade human tissues and evade the immune system. The main constituent, ß(1,3)-glucan, is remodeled by glucanosyltransferases of the GH72 family. Phr1p is responsible of glucan remodeling at neutral-alkaline pH and is essential for morphogenesis and virulence. Due to the pH-regulated expression of PHR1, the phr1Δ phenotype is manifested at pH > 6 and its severity increases with the rise in pH. We exploited the pH-conditional nature of a PHR1 null mutant to analyze the impact of glucan remodeling on the hyphal transcriptional program and the role of chitin synthases in the hyphal wall stress (HWS) response. RESULTS: In hyphal growth inducing conditions, phr1Δ germ tubes are defective in elongation, accumulate chitin, and constitutively activate the signaling pathways mediated by the MAP kinases Mkc1p, Cek1p and Hog1p. The transcriptional profiles revealed an increase of transcript levels for genes involved in cell wall formation (CHS2 and CHS8, CRH11, PGA23, orf19.750, RBR1, RBT4, ECM331, PGA6, PGA13), protein N-glycosylation and sorting in the ER (CWH8 and CHS7), signaling (CPP1, SSK2), ion transport (FLC2, YVC1), stress response and metabolism and a reduced expression of adhesins. A transient up-regulation of DNA replication genes associated with entry into S-phase occurred whereas cell-cycle regulating genes (PCL1, PCL2, CCN1, GIN4, DUN1, CDC28) were persistently up-regulated. To test the physiological relevance of altered CHS gene expression, phr1Δ chsxΔ (x = 2,3,8) mutant phenotypes were analyzed during the Y-H transition. PHR1 deletion was synthetic lethal with CHS3 loss on solid M199 medium-pH 7.5 and with CHS8 deletion on solid M199-pH 8. On Spider medium, PHR1 was synthetic lethal with CHS3 or CHS8 at pH 8. CONCLUSIONS: The absence of Phr1p triggers an adaptive response aimed to reinforce the hyphal cell wall and restore homeostasis. Chs3p is essential in preserving phr1Δ cell integrity during the Y-H transition. Our findings also unveiled an unanticipated essential role of Chs8p during filamentation on solid media. These results highlight the flexibility of fungal cells in maintaining cell wall integrity and contribute to assessments of glucan remodeling as a target for therapy.


Assuntos
Candida albicans/fisiologia , Parede Celular/metabolismo , Genoma Fúngico , Genômica , Glucanos/metabolismo , Hifas , Estresse Fisiológico , Análise por Conglomerados , Replicação do DNA , Epistasia Genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genômica/métodos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação , Transcriptoma
14.
Biochemistry ; 54(47): 6996-7009, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26535916

RESUMO

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with pro-life and pro-death activities, which plays critical roles in mitochondrial energy metabolism and caspase-independent apoptosis. Defects in AIF structure or expression can cause mitochondrial abnormalities leading to mitochondrial defects and neurodegeneration. The mechanism of AIF-induced apoptosis was extensively investigated, whereas the mitochondrial function of AIF is poorly understood. A unique feature of AIF is the ability to form a tight, air-stable charge-transfer (CT) complex upon reaction with NADH and to undergo a conformational switch leading to dimerization, proposed to be important for its vital and lethal functions. Although some aspects of interaction of AIF with NAD(+)/H have been analyzed, its precise mechanism is not fully understood. We investigated how the oxidized and photoreduced wild-type and G307A and -E variants of murine AIF associate with NAD(+)/H and nicotinamide mononucleotide (NMN(+)/H) to determine the role of the adenylate moiety in the binding process. Our results indicate that (i) the adenylate moiety of NAD(+)/H is crucial for the association with AIF and for the subsequent structural reorganization of the complex, but not for protein dimerization, (ii) FAD reduction rather than binding of NAD(+)/H to AIF initiates conformational rearrangement, and (iii) alteration of the adenylate-binding site by the G307E (equivalent to a pathological G308E mutation in human AIF) or G307A replacements decrease the affinity and association rate of NAD(+)/H, which, in turn, perturbs CT complex formation and protein dimerization but has no influence on the conformational switch in the regulatory peptide.


Assuntos
Fator de Indução de Apoptose/metabolismo , Apoptose , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Animais , Fator de Indução de Apoptose/química , Fator de Indução de Apoptose/genética , Sítios de Ligação , Humanos , Cinética , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Mutação , NAD/química , Oxirredução , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Temperatura
15.
Biochemistry ; 51(18): 3819-26, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22519987

RESUMO

Plasmodium falciparum ferredoxin-NADP(+) reductase (FNR) is a FAD-containing enzyme that, in addition to be a promising target of novel antimalarial drugs, represents an excellent model of plant-type FNRs. The cofactor specificity of FNRs depends on differences in both k(cat) and K(m) values for NADPH and NADH. Here, we report that deletion of the hydroxyl group of the conserved Y258 of P. falciparum FNR, which interacts with the 2'-phosphate group of NADPH, selectively decreased the k(cat) of the NADPH-dependent reaction by a factor of 2 to match that of the NADH-dependent one. Rapid-reaction kinetics, active-site titrations with NADP(+), and anaerobic photoreduction experiments indicated that this effect may be the consequence of destabilization of the catalytically competent conformation of bound NADPH. Moreover, because the Y258F replacement increased the K(m) for NADPH 4-fold and decreased that for NADH 3-fold, it led to a drop in the ability of the enzyme to discriminate between the coenzymes from 70- to just 1.5-fold. The impact of the Y258F change was not affected by the presence of the H286Q mutation, which is known to enhance the catalytic activity of the enzyme. Our data highlight the major role played by the Y258 hydroxyl group in determining the coenzyme specificity of P. falciparum FNR. From the general standpoint of engineering the kinetic properties of plant-type FNRs, although P. falciparum FNR is less strictly NADPH-dependent than its homologues, the almost complete abolishment of coenzyme selectivity reported here has never been accomplished before through a single mutation.


Assuntos
Ferredoxina-NADP Redutase/química , NADP/metabolismo , Tirosina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Coenzimas/metabolismo , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Cinética , NAD/metabolismo , Plasmodium falciparum/enzimologia , Especificidade por Substrato
16.
Proteomics ; 11(4): 657-74, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21241019

RESUMO

This review compiles results of medical relevance from mitochondrial proteomics, grouped either according to the type of disease - genetic or degenerative - or to the involved mechanism - oxidative stress or apoptosis. The findings are commented in the light of our current understanding of uniformity/variability in cell responses to different stimuli. Specificities in the conceptual and technical approaches to human mitochondrial proteomics are also outlined.


Assuntos
Doenças Genéticas Inatas/metabolismo , Proteínas Mitocondriais/análise , Doenças Neurodegenerativas/metabolismo , Proteômica/métodos , Animais , Humanos
17.
Biochemistry ; 48(40): 9525-33, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19736991

RESUMO

The NADP-binding site of Plasmodium falciparum ferredoxin-NADP(+) reductase contains two basic residues, His286 and Lys249, conserved within the Plasmodium genus, but not in other plant-type homologues. Previous crystal studies indicated that His286 interacts with the adenine ring and with the 5'-phosphate of 2'-P-AMP, a ligand that mimics the adenylate moiety of NADP(H). Here we show that replacement of His286 with aliphatic residues results both in a decrease in the affinity of the enzyme for NADPH and in a decrease in k(cat), due to a lowered hydride-transfer rate. Unexpectedly, the mutation to Gln produces an enzyme more active than the wild-type one, whereas the change to Lys destabilizes the nicotinamide-isoalloxazine interaction, decreasing k(cat). On the basis of the crystal structure of selected mutants complexed with 2'-P-AMP, we conclude that the His286 side chain plays a dual role in catalysis both by providing binding energy for NADPH and by favoring the catalytically competent orientation of its nicotinamide ring. For the latter function, the H-bonding potential rather than the positively charged state of the His286 imidazole seems sufficient. Furthermore, we show that the Lys249Ala mutation decreases K(m)(NADPH) and K(d) for NADP(+) or 2'-P-AMP by a factor of 10. We propose that the Lys249 side chain participates in substrate recognition by interacting with the 2'-phosphate of NADP(H) and that this interaction was not observed in the crystal form of the enzyme-2'-P-AMP complex due to a conformational perturbation of the substrate-binding loop induced by dimerization.


Assuntos
Ferredoxina-NADP Redutase/química , Histidina/química , NADP/metabolismo , Plasmodium falciparum/enzimologia , Sítios de Ligação/genética , Catálise , Cristalografia por Raios X , Ferredoxina-NADP Redutase/metabolismo , Ferredoxina-NADP Redutase/fisiologia , Histidina/genética , Cinética , Lisina/química , Lisina/genética , NADP/química , Niacinamida/química , Ligação Proteica/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Especificidade por Substrato/genética
18.
IUBMB Life ; 60(5): 287-300, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18421771

RESUMO

Glutamate synthases play with glutamine synthetase an essential role in nitrogen assimilation processes in microorganisms, plants, and lower animals by catalyzing the net synthesis of one molecule of L-glutamate from L-glutamine and 2-oxoglutarate. They exhibit a modular architecture with a common subunit or region, which is responsible for the L-glutamine-dependent glutamate synthesis from 2-oxoglutarate. Here, a PurF- (Type II- or Ntn-) type amidotransferase domain is coupled to the synthase domain, a (beta/alpha)8 barrel containing FMN and one [3Fe-4S]0,+1 cluster, through a approximately 30 angstroms-long intramolecular tunnel for the transfer of ammonia between the sites. In bacterial and eukaryotic GltS, reducing equivalents are provided by reduced pyridine nucleotides thanks to the stable association with a second subunit or region, which acts as a FAD-dependent NAD(P)H oxidoreductase and is responsible for the formation of the two low potential [4Fe-4S]+1,+2 clusters of the enzyme. In photosynthetic cells, reduced ferredoxin is the physiological reductant. This review focus on the mechanism of cross-activation of the synthase and glutaminase reactions in response to the bound substrates and the redox state of the enzyme cofactors, as well as on recent information on the structure of the alphabeta protomer of the NADPH-dependent enzyme, which sheds light on the intramolecular electron transfer pathway between the flavin cofactors.


Assuntos
Glutamato Sintase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Nitrogênio/metabolismo , Regulação Alostérica
19.
Biochemistry ; 45(29): 8712-20, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16846214

RESUMO

Mycobacterium tuberculosis FprA is a NADPH-ferredoxin reductase, functionally and structurally similar to the mammalian adrenodoxin reductase. It is presumably involved in supplying electrons to one or more of the pathogen's cytochrome P450s through reduced ferredoxins. It has been proposed on the basis of crystallographic data (Bossi, R. T., et al. (2002) Biochemistry 41, 8807-8818) that the highly conserved His57 and Glu214 whose side chains are H-bonded are involved in catalysis. Both residues were individually changed to nonionizable amino acyl residues through site-directed mutagenesis. Steady-state kinetics showed that the role of Glu214 in catalysis is negligible. On the contrary, the substitutions of His57 markedly impaired the catalytic efficiency of FprA for ferredoxin in the physiological reaction. Furthemore, they decreased the k(cat)/K(m) value for NADPH in the ferricyanide reduction. Rapid-reaction (stopped-flow) kinetic analysis of the isolated reductive half-reaction of wild-type and His57Gln forms of FprA with NADPH and NADH allowed a detailed description of the mechanism of enzyme-bound FAD reduction, with the identification of the intermediates involved. The His57Gln mutation caused a 6-fold decrease in the rate of hydride transfer from either NADPH or NADH to the enzyme-bound FAD cofactor. The 3D structure of FprA-H57Q, obtained at 1.8 A resolution, explains the inefficient hydride transfer of the mutant in terms of a suboptimal geometry of the nicotinamide-isoalloxazine interaction in the active site. These data demonstrate the role of His57 in the correct binding of NADPH to FprA for the subsequent steps of the catalytic cycle to proceed at a high rate.


Assuntos
Sítios de Ligação , Ácido Glutâmico/química , Histidina/química , NADH NADPH Oxirredutases/química , Sequência de Aminoácidos , Anaerobiose , Cristalografia por Raios X , Estabilidade Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Temperatura Alta , Cinética , Mycobacterium tuberculosis , NAD/metabolismo , NADH NADPH Oxirredutases/genética , NADP/metabolismo , Oxirredução
20.
J Biol Chem ; 280(50): 41360-5, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16223729

RESUMO

Human histone demethylase LSD1 is a flavin-dependent amine oxidase that catalyzes the specific removal of methyl groups from mono- and dimethylated Lys4 of histone H3. The N-terminal tail of H3 is subject to various covalent modifications, and a fundamental question in LSD1 biology is how these epigenetic marks affect the demethylase activity. We show that LSD1 does not have a strong preference for mono- or dimethylated Lys4 of H3. Substrate recognition is not confined to the residues neighboring Lys4, but it requires a sufficiently long peptide segment consisting of the N-terminal 20 amino acids of H3. Electrostatic interactions are an important factor in protein-substrate recognition, as indicated by the high sensitivity of Km to ionic strength. We have probed LSD1 for its ability to demethylate Lys4 in presence of a second modification on the same peptide substrate. Methylation of Lys9 does not affect enzyme catalysis. Conversely, Lys9 acetylation causes an almost 6-fold increase in the Km value, whereas phosphorylation of Ser10 totally abolishes activity. LSD1 is inhibited by a demethylated peptide with an inhibition constant of 1.8 microM, suggesting that LSD1 can bind to H3 independently of Lys4 methylation. LSD1 is a chromatin-modifying enzyme, which is able to read different epigenetic marks on the histone N-terminal tail and can serve as a docking module for the stabilization of the associated corepressor complex(es) on chromatin.


Assuntos
Histonas/química , Oxirredutases N-Desmetilantes/fisiologia , Sequência de Aminoácidos , Catálise , Cromatina/química , Cromatina/metabolismo , Cromatografia em Gel , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Escherichia coli/metabolismo , Flavinas/química , Histona Desmetilases , Humanos , Concentração de Íons de Hidrogênio , Íons , Cinética , Lisina/química , Metilação , Modelos Biológicos , Modelos Químicos , Modelos Genéticos , Dados de Sequência Molecular , Monoaminoxidase/química , Oxirredutases N-Desmetilantes/metabolismo , Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Serina/química , Eletricidade Estática , Especificidade por Substrato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...