Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 202(2): 608-617, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30541883

RESUMO

Therapeutic strategies based on in vitro-transcribed mRNA (IVT) are attractive because they avoid the permanent signature of genomic integration that is associated with DNA-based therapy and result in the transient production of proteins of interest. To date, IVT has mainly been used in vaccination protocols to generate immune responses to foreign Ags. In this "proof-of-principle" study, we explore a strategy of combinatorial IVT to recruit and reprogram immune effector cells to acquire divergent biological functions in mice in vivo. First, we demonstrate that synthetic mRNA encoding CCL3 is able to recruit murine monocytes in a nonprogrammed state, exhibiting neither bactericidal nor tissue-repairing properties. However, upon addition of either Ifn-γ mRNA or Il-4 mRNA, we successfully polarized these cells to adopt either M1 or M2 macrophage activation phenotypes. This cellular reprogramming was demonstrated through increased expression of known surface markers and through the differential modulation of NADPH oxidase activity, or the superoxide burst. Our study demonstrates how IVT strategies can be combined to recruit and reprogram immune effector cells that have the capacity to fulfill complex biological tasks in vivo.


Assuntos
Reprogramação Celular , Macrófagos/imunologia , Monócitos/imunologia , RNA Mensageiro/imunologia , Animais , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL3/genética , Células HeLa , Humanos , Interferon gama/genética , Interleucina-4/genética , Linfócitos/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Estudo de Prova de Conceito , RNA Mensageiro/síntese química , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 115(42): E9944-E9952, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275336

RESUMO

Dysfunctional endothelium causes more disease than any other cell type. Systemically administered RNA delivery to nonliver tissues remains challenging, in large part because there is no high-throughput method to identify nanoparticles that deliver functional mRNA to cells in vivo. Here we report a system capable of simultaneously quantifying how >100 lipid nanoparticles (LNPs) deliver mRNA that is translated into functional protein. Using this system (named FIND), we measured how >250 LNPs delivered mRNA to multiple cell types in vivo and identified 7C2 and 7C3, two LNPs that efficiently deliver siRNA, single-guide RNA (sgRNA), and mRNA to endothelial cells. The 7C3 delivered Cas9 mRNA and sgRNA to splenic endothelial cells as efficiently as hepatocytes, distinguishing it from LNPs that deliver Cas9 mRNA and sgRNA to hepatocytes more than other cell types. These data demonstrate that FIND can identify nanoparticles with novel tropisms in vivo.


Assuntos
Sistemas CRISPR-Cas , Células Endoteliais/metabolismo , Edição de Genes , Técnicas de Transferência de Genes , Lipídeos/química , Nanopartículas/administração & dosagem , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , Animais , Células Cultivadas , Células Endoteliais/citologia , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , RNA Guia de Cinetoplastídeos/química , RNA Mensageiro/química
3.
Bioconjug Chem ; 29(9): 3072-3083, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30067354

RESUMO

In vitro transcribed (IVT) mRNA is an appealing platform for next generation vaccines, as it can be manufactured rapidly at large scale to meet emerging pathogens. However, its performance as a robust vaccine is strengthened by supplemental immune stimulation, which is typically provided by adjuvant formulations that facilitate delivery and stimulate immune responses. Here, we present a strategy for increasing translation of a model IVT mRNA vaccine while simultaneously modulating its immune-stimulatory properties in a programmable fashion, without relying on delivery vehicle formulations. Substitution of uridine with the modified base N1-methylpseudouridine reduces the intrinsic immune stimulation of the IVT mRNA and enhances antigen translation. Tethering adjuvants to naked IVT mRNA through antisense nucleotides boosts the immunostimulatory properties of adjuvants in vitro, without impairing transgene production or adjuvant activity. In vivo, intramuscular injection of tethered IVT mRNA-TLR7 agonists leads to enhanced local immune responses, and to antigen-specific cell-mediated and humoral responses. We believe this system represents a potential platform compatible with any adjuvant of interest to enable specific programmable stimulation of immune responses.


Assuntos
Imunidade Inata/efeitos dos fármacos , RNA Mensageiro/genética , Vacinas Sintéticas/farmacologia , Animais , Formação de Anticorpos , Imunidade Celular , Injeções Intramusculares , Camundongos , Células RAW 264.7 , Transcrição Gênica , Vacinas Sintéticas/administração & dosagem
4.
Nano Lett ; 18(3): 2148-2157, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29489381

RESUMO

Endothelial cells and macrophages play active roles in disease and as a result are important targets for nucleic acid therapies. While thousands of chemically distinct lipid nanoparticles (LNPs) can be synthesized to deliver nucleic acids, studying more than a few LNPs in vivo is challenging. As a result, it is difficult to understand how nanoparticles target these cells in vivo. Using high throughput LNP barcoding, we quantified how well LNPs delivered DNA barcodes to endothelial cells and macrophages in vitro, as well as endothelial cells and macrophages isolated from the lung, heart, and bone marrow in vivo. We focused on two fundamental questions in drug delivery. First, does in vitro LNP delivery predict in vivo LNP delivery? By comparing how 281 LNPs delivered barcodes to endothelial cells and macrophages in vitro and in vivo, we found in vitro delivery did not predict in vivo delivery. Second, does LNP delivery change within the microenvironment of a tissue? We quantified how 85 LNPs delivered barcodes to eight splenic cell populations, and found that cell types derived from myeloid progenitors tended to be targeted by similar LNPs, relative to cell types derived from lymphoid progenitors. These data demonstrate that barcoded LNPs can elucidate fundamental questions about in vivo nanoparticle delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Animais , Linhagem Celular , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanotecnologia , Ácidos Nucleicos/farmacocinética
5.
Biomaterials ; 159: 189-203, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29331806

RESUMO

The translational efficiency of an in vitro transcribed (IVT) mRNA was measured upon delivery to primary skeletal muscle cells and to a mouse model system, towards the development of a predictive in vitro assay for the screening and validation of intramuscular mRNA-based vaccines. When IVT mRNA was delivered either naked or complexed with novel aminoglycoside-based delivery vehicles, significant differences in protein expression in vitro and in vivo were observed. We hypothesized that this previously anticipated discrepancy was due to differences in the mechanism of IVT mRNA endosomal entry and release following delivery. To address this, IVT mRNA was fluorescently labeled prior to delivery, to visualize its distribution. Colocalization with endosomal markers indicated that different entry pathways were utilized in vivo and in vitro, depending on the delivery vehicle, resulting in variations in protein expression levels. Since extracellular matrix stiffness (ECM) influences mRNA entry, trafficking and release, the effect of mechanotransduction on mRNA expression was investigated in vitro upon delivery of IVT mRNA alone, and complexed with delivery vehicles to skeletal muscle cells grown on ∼10 kPa hydrogels. This in vitro hydrogel model more accurately recapitulated the results obtained in vivo upon IM injection, indicating that this approach may assist in the characterization of mRNA based vaccines.


Assuntos
Mecanotransdução Celular/fisiologia , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Endossomos/química , Matriz Extracelular/química , Feminino , Citometria de Fluxo , Células HeLa , Humanos , Hidrogéis/química , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...