Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Cancer ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821853

RESUMO

Prostaglandin E2 (PGE2) is well known to promote tumor progression by boosting cancer cell proliferation while inhibiting anticancer immunity. Recent data from Lacher et al. and Morotti et al. demonstrate that one of the mechanisms through which PGE2 suppresses tumor-targeting immune responses involves downregulation of interleukin 2 (IL2) receptors and consequent inhibition of mitochondrial metabolism in T cells.

3.
Nat Rev Immunol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649722

RESUMO

Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38364947

RESUMO

PURPOSE: Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS: Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS: At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/ß receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS: Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.

5.
Trends Cancer ; 10(3): 177-179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355355

RESUMO

Mammalian cells react to the accumulation of double-stranded (ds)DNA in the cytosol by secreting antiviral and proinflammatory cytokines, notably type I interferon (IFN). Recent data reported by Tani et al. demonstrate that overactivation of this pathway is prevented by an adaptive feedback mechanism elicited by type I IFN receptors and executed by the exonuclease three prime repair exonuclease 1 (TREX1).


Assuntos
Citocinas , Exodesoxirribonucleases , Fosfoproteínas , Animais , DNA , Mamíferos/genética , Mamíferos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
6.
Cancer Lett ; 570: 216329, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499741

RESUMO

Radiation therapy (RT) is essential for the management of glioblastoma (GBM). However, GBM frequently relapses within the irradiated margins, thus suggesting that RT might stimulate mechanisms of resistance that limits its efficacy. GBM is recognized for its metabolic plasticity, but whether RT-induced resistance relies on metabolic adaptation remains unclear. Here, we show in vitro and in vivo that irradiated GBM tumors switch their metabolic program to accumulate lipids, especially unsaturated fatty acids. This resulted in an increased formation of lipid droplets to prevent endoplasmic reticulum (ER) stress. The reduction of lipid accumulation with genetic suppression and pharmacological inhibition of the fatty acid synthase (FASN), one of the main lipogenic enzymes, leads to mitochondrial dysfunction and increased apoptosis of irradiated GBM cells. Combination of FASN inhibition with focal RT improved the median survival of GBM-bearing mice. Supporting the translational value of these findings, retrospective analysis of the GLASS consortium dataset of matched GBM patients revealed an enrichment in lipid metabolism signature in recurrent GBM compared to primary. Overall, these results demonstrate that RT drives GBM resistance by generating a lipogenic environment permissive to GBM survival. Targeting lipid metabolism might be required to develop more effective anti-GBM strategies.


Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Estudos Retrospectivos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Ácidos Graxos Insaturados/uso terapêutico , Ácidos Graxos/metabolismo
7.
Int J Radiat Biol ; 99(11): 1702-1715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212632

RESUMO

PURPOSE: Previous research has highlighted the impact of radiation damage, with cancer patients developing acute disorders including radiation induced pneumonitis or chronic disorders including pulmonary fibrosis months after radiation therapy ends. We sought to discover biomarkers that predict these injuries and develop treatments that mitigate this damage and improve quality of life. MATERIALS AND METHODS: Six- to eight-week-old female C57BL/6 mice received 1, 2, 4, 8, 12 Gy or sham whole body irradiation. Animals were euthanized 48 h post exposure and lungs removed, snap frozen and underwent RNA isolation. Microarray analysis was performed to determine dysregulation of messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA) after radiation injury. RESULTS: We observed sustained dysregulation of specific RNA markers including: mRNAs, lncRNAs, and miRNAs across all doses. We also identified significantly upregulated genes that can indicate high dose exposure, including Cpt1c, Pdk4, Gdf15, and Eda2r, which are markers of senescence and fibrosis. Only three miRNAs were significantly dysregulated across all radiation doses: miRNA-142-3p and miRNA-142-5p were downregulated and miRNA-34a-5p was upregulated. IPA analysis predicted inhibition of several molecular pathways with increasing doses of radiation, including: T cell development, Quantity of leukocytes, Quantity of lymphocytes, and Cell viability. CONCLUSIONS: These RNA biomarkers might be highly relevant in the development of treatments and in predicting normal tissue injury in patients undergoing radiation treatment. We are conducting further experiments in our laboratory, which includes a human lung-on-a-chip model, to develop a decision tree model using RNA biomarkers.


Assuntos
MicroRNAs , Irradiação Corporal Total , Camundongos , Animais , Humanos , Irradiação Corporal Total/efeitos adversos , Qualidade de Vida , Camundongos Endogâmicos C57BL , Pulmão/efeitos da radiação , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Modelos Animais de Doenças , Receptor Xedar/genética , Receptor Xedar/metabolismo
8.
Int Rev Cell Mol Biol ; 376: 121-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36997267

RESUMO

Fatty acid metabolic reprogramming has emerged as a major regulator of anti-tumor immune responses with large body of evidence that demonstrate its ability to impact the differentiation and function of immune cells. Therefore, depending on the metabolic cues that stem in the tumor microenvironment, the tumor fatty acid metabolism can tilt the balance of inflammatory signals to either promote or impair anti-tumor immune responses. Oxidative stressors such as reactive oxygen species generated from radiation therapy can rewire the tumor energy supply, suggesting that radiation therapy can further perturb the energy metabolism of a tumor by promoting fatty acid production. In this review, we critically discuss the network of fatty acid metabolism and how it regulates immune response especially in the context of radiation therapy.


Assuntos
Metabolismo Energético , Neoplasias , Humanos , Neoplasias/metabolismo , Microambiente Tumoral , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo
9.
Trends Immunol ; 44(4): 245-247, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36933950

RESUMO

Mitochondrial outer membrane permeabilization (MOMP) is crucial for the cytosolic accumulation of mitochondrial DNA (mtDNA) species that are required to jumpstart innate and adaptive immunity. Recent data reported by Ghosh et al. suggest that tumor protein p53 regulates MOMP-dependent type I interferon (IFN) production, not only via MOMP-promoting effects, but also by directing mtDNA-degrading exonucleases to proteasomal processing.


Assuntos
Mitocôndrias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mitocôndrias/metabolismo , Apoptose , DNA Mitocondrial/genética
10.
Sci Rep ; 13(1): 200, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604457

RESUMO

Radiation injury from medical, accidental, or intentional sources can induce acute and long-term hepatic dysregulation, fibrosis, and cancer. This long-term hepatic dysregulation decreases quality of life and may lead to death. Our goal in this study is to determine acute changes in biological pathways and discover potential RNA biomarkers predictive of radiation injury. We performed whole transcriptome microarray analysis of mouse liver tissue (C57BL/6 J) 48 h after whole-body irradiation with 1, 2, 4, 8, and 12 Gray to identify significant expression changes in mRNAs, lncRNAs, and miRNAs, We also validated changes in specific RNAs through qRT-PCR. We used Ingenuity Pathway Analysis (IPA) to identify pathways associated with gene expression changes. We observed significant dysregulation of multiple mRNAs across all doses. In contrast, miRNA dysregulation was observed upwards of 2 Gray. The most significantly upregulated mRNAs function as tumor suppressors: Cdkn1a, Phlda3, and Eda2r. The most significantly downregulated mRNAs were involved in hemoglobin synthesis, inflammation, and mitochondrial function including multiple members of Hbb and Hba. The most significantly upregulated miRNA included: miR-34a-5p, miR-3102-5p, and miR-3960, while miR-342-3p, miR-142a-3p, and miR-223-3p were most significantly downregulated. IPA predicted activation of cell cycle checkpoint control pathways and inhibition of pathways relevant to inflammation and erythropoietin. Clarifying expression of mRNA, miRNA and lncRNA at a short time point (48 h) offers insight into potential biomarkers, including radiation markers shared across organs and animal models. This information, once validated in human models, can aid in development of bio-dosimetry biomarkers, and furthers our understanding of acute pathway dysregulation.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Inflamação , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Análise em Microsséries , MicroRNAs/genética , MicroRNAs/metabolismo , Qualidade de Vida , RNA Longo não Codificante/genética , Receptor Xedar
11.
EMBO J ; 42(7): e111961, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574362

RESUMO

Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.


Assuntos
Proteína Quinase Ativada por DNA , Glioblastoma , Nucleotidiltransferases , Humanos , Carcinogênese , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Glioblastoma/genética , Imunidade Inata , Inflamação , Nucleotidiltransferases/metabolismo , Microambiente Tumoral , Proteína Quinase Ativada por DNA/metabolismo
12.
Oncoimmunology ; 11(1): 2127274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185803

RESUMO

In a recent study in Nature Immunology, Musella et al. demonstrate that suboptimal type I interferon (IFN-I) signaling in tumors undergoing immunogenic cell death (ICD) facilitates the accumulation of cancer stem cells (CSCs) by triggering the epigenetic regulator lysine demethylase 1B (KDM1B). KDM1B stands out as a promising target for the development of novel strategies to improve anti-cancer responses driven by ICD.


Assuntos
Interferon Tipo I , Neoplasias , Interferon Tipo I/metabolismo , Lisina/metabolismo , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo
13.
Methods Cell Biol ; 172: 163-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36064222

RESUMO

Cancer cell-intrinsic type I interferon (IFN-I) activation is required to initiate early innate immune responses and the subsequent radiation-induced anti-tumor immunity. Investigating the secretion of IFN-I cytokines in response to radiation therapy (RT) is therefore a critical readout for selecting the best immunogenic radiation dose-fractionation regimen. In this chapter, we present different ELISA-based quantification techniques that can be utilized to assess the secretion of tumor-derived IFN-I cytokines, namely IFN-α and IFN-ß.


Assuntos
Interferon Tipo I , Neoplasias , Citocinas , Ensaio de Imunoadsorção Enzimática , Imunidade Inata , Interferon Tipo I/farmacologia , Interferon-alfa , Neoplasias/radioterapia
14.
Front Cell Dev Biol ; 10: 875132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721517

RESUMO

Ataxia-telangiectasia mutated (ATM) is one of the three main apical kinases at the crux of DNA damage response and repair in mammalian cells. ATM activates a cascade of downstream effector proteins to regulate DNA repair and cell cycle checkpoints in response to DNA double-strand breaks. While ATM is predominantly known for its role in DNA damage response and repair, new roles of ATM have recently begun to emerge, such as in regulating oxidative stress or metabolic pathways. Here, we report the surprising discovery that ATM inhibition and deletion lead to reduced expression of the nuclear envelope protein lamin A. Lamins are nuclear intermediate filaments that modulate nuclear shape, structure, and stiffness. Accordingly, inhibition or deletion of ATM resulted in increased nuclear deformability and enhanced cell migration through confined spaces, which requires substantial nuclear deformation. These findings point to a novel connection between ATM and lamin A and may have broad implications for cells with ATM mutations-as found in patients suffering from Ataxia Telangiectasia and many human cancers-which could lead to enhanced cell migration and increased metastatic potential.

15.
Cancer Immunol Immunother ; 71(4): 839-850, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34435232

RESUMO

The expression of immune-related genes in cancer cells can alter the anti-tumor immune response and thereby impact patient outcomes. Radiotherapy has been shown to modulate immune-related genes dependent on the fractionation regimen. To identify long-term changes in gene expression after irradiation, PC3 (p53 deleted) and LNCaP (p53 wildtype) prostate cancer cells were irradiated with either a single dose (SD, 10 Gy) or a fractionated regimen (MF) of 10 fractions (1 Gy per fraction). Whole human genome arrays were used to determine gene expression at 24 h and 2 months after irradiation. Immune pathway activation was analyzed with Ingenuity Pathway Analysis software. Additionally, 3D colony formation assays and T-cell cytotoxicity assays were performed. LNCaP had a higher basal expression of immunogenic genes and was more efficiently killed by cytotoxic T-cells compared to PC3. In both cell lines, MF irradiation resulted in an increase in multiple immune-related genes immediately after irradiation, while at 2 months, SD irradiation had a more pronounced effect on radiation-induced gene expression. Both immunogenic and immunosuppressive genes were upregulated in the long term in PC3 cells by a 10 Gy SD irradiation but not in LNCaP. T-cell-mediated cytotoxicity was significantly increased in 10 Gy SD PC3 cells compared to the unirradiated control and could be further enhanced by treatment with immune checkpoint inhibitors. Irradiation impacts the expression of immune-related genes in cancer cells in a fractionation-dependent manner. Understanding and targeting these changes may be a promising strategy for primary prostate cancer and recurrent tumors.


Assuntos
Recidiva Local de Neoplasia , Neoplasias da Próstata , Apoptose , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia
17.
J Transl Med ; 19(1): 336, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364390

RESUMO

BACKGROUND: Radiation therapy is integral to effective thoracic cancer treatments, but its application is limited by sensitivity of critical organs such as the heart. The impacts of acute radiation-induced damage and its chronic effects on normal heart cells are highly relevant in radiotherapy with increasing lifespans of patients. Biomarkers for normal tissue damage after radiation exposure, whether accidental or therapeutic, are being studied as indicators of both acute and delayed effects. Recent research has highlighted the potential importance of RNAs, including messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as biomarkers to assess radiation damage. Understanding changes in mRNA and non-coding RNA expression will elucidate biological pathway changes after radiation. METHODS: To identify significant expression changes in mRNAs, lncRNAs, and miRNAs, we performed whole transcriptome microarray analysis of mouse heart tissue at 48 h after whole-body irradiation with 1, 2, 4, 8, and 12 Gray (Gy). We also validated changes in specific lncRNAs through RT-qPCR. Ingenuity Pathway Analysis (IPA) was used to identify pathways associated with gene expression changes. RESULTS: We observed sustained increases in lncRNAs and mRNAs, across all doses of radiation. Alas2, Aplnr, and Cxc3r1 were the most significantly downregulated mRNAs across all doses. Among the significantly upregulated mRNAs were cell-cycle arrest biomarkers Gdf15, Cdkn1a, and Ckap2. Additionally, IPA identified significant changes in gene expression relevant to senescence, apoptosis, hemoglobin synthesis, inflammation, and metabolism. LncRNAs Abhd11os, Pvt1, Trp53cor1, and Dino showed increased expression with increasing doses of radiation. We did not observe any miRNAs with sustained up- or downregulation across all doses, but miR-149-3p, miR-6538, miR-8101, miR-7118-5p, miR-211-3p, and miR-3960 were significantly upregulated after 12 Gy. CONCLUSIONS: Radiation-induced RNA expression changes may be predictive of normal tissue toxicities and may indicate targetable pathways for radiation countermeasure development and improved radiotherapy treatment plans.


Assuntos
MicroRNAs , RNA Longo não Codificante , 5-Aminolevulinato Sintetase , Animais , Redes Reguladoras de Genes , Humanos , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Irradiação Corporal Total
18.
Front Oncol ; 11: 671044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094969

RESUMO

Glioblastoma (GBM) is among the most aggressive of brain tumors and confers a dismal prognosis despite advances in surgical technique, radiation delivery methods, chemotherapy, and tumor-treating fields. While immunotherapy (IT) has improved the care of several adult cancers with previously dismal prognoses, monotherapy with IT in GBM has shown minimal response in first recurrence. Recent discoveries in lymphatics and evaluation of blood brain barrier offer insight to improve the use of ITs and determine the best combinations of therapies, including radiation. We highlight important features of the tumor immune microenvironment in GBM and potential for combining radiation and immunotherapy to improve prognosis in this devastating disease.

19.
J Transl Med ; 19(1): 255, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112189
20.
EMBO Mol Med ; 13(8): e14393, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34128586

RESUMO

Patients with breast cancer obtain limited clinical benefits from immune checkpoint inhibitors (ICIs), pointing to the existence of multiple immunological alterations that cannot be simultaneously normalized with immunotherapy. Accumulating preclinical evidence suggests that radiation therapy (RT) can be harnessed to sensitize primary and metastatic mouse mammary carcinomas to ICIs. However, various clinical trials combining RT with ICIs in patients with breast cancer documented little cooperativity. Here, we discuss immunological barriers that may prevent RT from unlocking the therapeutic potential of ICIs in patients with breast cancer. These observations may inspire the development of combinatorial regimens that might benefit patients with diverse neoplastic conditions including brain tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Animais , Neoplasias da Mama/terapia , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos , Imunoterapia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...