Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 100(7): 5578-5591, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28527796

RESUMO

Many countries have pledged to reduce greenhouse gases. In this context, the dairy sector is one of the identified sectors to adapt production circumstances to address socio-environmental constraints due to its large carbon footprint related to CH4 emission. This study aimed mainly to estimate (1) the genetic parameters of 2 milk mid-infrared-based CH4 proxies [predicted daily CH4 emission (PME, g/d), and log-transformed predicted CH4 intensity (LMI)] and (2) their genetic correlations with milk production traits [milk (MY), fat (FY), and protein (PY) yields] from first- and second-parity Holstein cows. A total of 336,126 and 231,400 mid-infrared CH4 phenotypes were collected from 56,957 and 34,992 first- and second-parity cows, respectively. The PME increased from the first to the second lactation (433 vs. 453 g/d) and the LMI decreased (2.93 vs. 2.86). We used 20 bivariate random regression test-day models to estimate the variance components. Moderate heritability values were observed for both CH4 traits, and those values decreased slightly from the first to the second lactation (0.25 ± 0.01 and 0.22 ± 0.01 for PME; 0.18 ± 0.01 and 0.17 ± 0.02 for LMI). Lactation phenotypic and genetic correlations were negative between PME and MY in both first and second lactations (-0.07 vs. -0.07 and -0.19 vs. -0.24, respectively). More close scrutiny revealed that relative increase of PME was lower with high MY levels even reverting to decrease, and therefore explaining the negative correlations, indicating that higher producing cows could be a mitigation option for CH4 emission. The PME phenotypic correlations were almost equal to 0 with FY and PY for both lactations. However, the genetic correlations between PME and FY were slightly positive (0.11 and 0.12), whereas with PY the correlations were slightly negative (-0.05 and -0.04). Both phenotypic and genetic correlations between LMI and MY or PY or FY were always relatively highly negative (from -0.21 to -0.88). As the genetic correlations between PME and LMI were strong (0.71 and 0.72 in first and second lactation), the selection of one trait would also strongly influence the other trait. However, in animal breeding context, PME, as a direct quantity CH4 proxy, would be preferred to LMI, which is a ratio trait of PME with a trait already in the index. The range of PME sire estimated breeding values were 22.1 and 29.41 kg per lactation in first and second parity, respectively. Further studies must be conducted to evaluate the effect of the introduction of PME in a selection index on the other traits already included in this index, such as, for instance, fertility or longevity.


Assuntos
Lactação/genética , Metano/metabolismo , Leite/metabolismo , Animais , Cruzamento , Bovinos , Feminino , Modelos Lineares , Metano/análise , Paridade , Fenótipo , Gravidez , Espectrofotometria Infravermelho/veterinária
2.
J Dairy Sci ; 99(9): 7247-7260, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27372592

RESUMO

The aim of this study was to estimate phenotypic and genetic correlations between methane production (Mp) and milk fatty acid contents of first-parity Walloon Holstein cows throughout lactation. Calibration equations predicting daily Mp (g/d) and milk fatty acid contents (g/100 dL of milk) were applied on milk mid-infrared spectra related to Walloon milk recording. A total of 241,236 predictions of Mp and milk fatty acids were used. These data were collected between 5 and 305 d in milk in 33,555 first-parity Holstein cows from 626 herds. Pedigree data included 109,975 animals. Bivariate (i.e., Mp and a fatty acid trait) random regression test-day models were developed to estimate phenotypic and genetic parameters of Mp and milk fatty acids. Individual short-chain fatty acids (SCFA) and groups of saturated fatty acids, SCFA, and medium-chain fatty acids showed positive phenotypic and genetic correlations with Mp (from 0.10 to 0.16 and from 0.23 to 0.30 for phenotypic and genetic correlations, respectively), whereas individual long-chain fatty acids (LCFA), and groups of LCFA, monounsaturated fatty acids, and unsaturated fatty acids showed null to positive phenotypic and genetic correlations with Mp (from -0.03 to 0.13 and from -0.02 to 0.32 for phenotypic and genetic correlations, respectively). However, these correlations changed throughout lactation. First, de novo individual and group fatty acids (i.e., C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, SCFA group) showed low phenotypic or genetic correlations (or both) in early lactation and higher at the end of lactation. In contrast, phenotypic and genetic correlations between Mp and C16:0, which could be de novo synthetized or derived from blood lipids, were more stable during lactation. This fatty acid is the most abundant fatty acid of the saturated fatty acid and medium-chain fatty acid groups of which correlations with Mp showed the same pattern across lactation. Phenotypic and genetic correlations between Mp and C17:0 and C18:0 were low in early lactation and increased afterward. Phenotypic and genetic correlations between Mp and C18:1 cis-9 originating from the blood lipids were negative in early lactation and increased afterward to become null from 18 wk until the end of lactation. Correlations between Mp and groups of LCFA, monounsaturated fatty acids, and unsaturated fatty acids showed a similar or intermediate pattern across lactation compared with fatty acids that compose them. Finally, these results indicate that correlations between Mp and milk fatty acids vary following lactation stage of the cow, a fact still often ignored when trying to predict Mp from milk fatty acid profile.


Assuntos
Bovinos/genética , Ácidos Graxos Monoinsaturados/análise , Ácidos Graxos Insaturados/análise , Lactação/genética , Metano/análise , Leite/química , Animais , Feminino , Modelos Teóricos , Paridade , Fenótipo , Característica Quantitativa Herdável
3.
J Dairy Sci ; 99(5): 3798-3814, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923054

RESUMO

Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The estimated correlations between comfort and THIavg values of 70 (which represents the upper end of the THIavg scale in BEL-LUX) were lower for BEL-LUX (0.70-0.80) than for SPA (0.83-0.85). Overall, animals producing in the more temperate climates and semi-extensive grazing systems of BEL and LUX showed HS at lower heat loads and more re-ranking across the THI scale than animals producing in the warmer climate and intensive indoor system of SPA.


Assuntos
Temperatura Alta , Lactação , Animais , Bovinos , Mudança Climática , Feminino , Transtornos de Estresse por Calor/veterinária , Umidade , Leite/metabolismo
4.
J Dairy Sci ; 99(5): 4071-4079, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26778306

RESUMO

The challenge of managing and breeding dairy cows is permanently adapting to changing production circumstances under socio-economic constraints. If managing and breeding address different timeframes of action, both need relevant phenotypes that allow for precise monitoring of the status of the cows, and their health, behavior, and well-being as well as their environmental impact and the quality of their products (i.e., milk and subsequently dairy products). Milk composition has been identified as an important source of information because it could reflect, at least partially, all these elements. Major conventional milk components such as fat, protein, urea, and lactose contents are routinely predicted by mid-infrared (MIR) spectrometry and have been widely used for these purposes. But, milk composition is much more complex and other nonconventional milk components, potentially predicted by MIR, might be informative. Such new milk-based phenotypes should be considered given that they are cheap, rapidly obtained, usable on a large scale, robust, and reliable. In a first approach, new phenotypes can be predicted from MIR spectra using techniques based on classical prediction equations. This method was used successfully for many novel traits (e.g., fatty acids, lactoferrin, minerals, milk technological properties, citrate) that can be then useful for management and breeding purposes. An innovation was to consider the longitudinal nature of the relationship between the trait of interest and the MIR spectra (e.g., to predict methane from MIR). By avoiding intermediate steps, prediction errors can be minimized when traits of interest (e.g., methane, energy balance, ketosis) are predicted directly from MIR spectra. In a second approach, research is ongoing to detect and exploit patterns in an innovative manner, by comparing observed with expected MIR spectra directly (e.g., pregnancy). All of these traits can then be used to define best practices, adjust feeding and health management, improve animal welfare, improve milk quality, and mitigate environmental impact. Under the condition that MIR data are available on a large scale, phenotypes for these traits will allow genetic and genomic evaluations. Introduction of novel traits into the breeding objectives will need additional research to clarify socio-economic weights and genetic correlations with other traits of interest.


Assuntos
Cruzamento/métodos , Bovinos/fisiologia , Indústria de Laticínios/métodos , Leite/química , Animais , Bovinos/genética , Feminino , Fenótipo
5.
J Dairy Sci ; 98(8): 5740-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026761

RESUMO

The main goal of this study was to develop, apply, and validate a new method to predict an indicator for CH4 eructed by dairy cows using milk mid-infrared (MIR) spectra. A novel feature of this model was the consideration of lactation stage to reflect changes in the metabolic status of the cow. A total of 446 daily CH4 measurements were obtained using the SF6 method on 142 Jersey, Holstein, and Holstein-Jersey cows. The corresponding milk samples were collected during these CH4 measurements and were analyzed using MIR spectroscopy. A first derivative was applied to the milk MIR spectra. To validate the novel calibration equation incorporating days in milk (DIM), 2 calibration processes were developed: the first was based only on CH4 measurements and milk MIR spectra (independent of lactation stage; ILS); the second included milk MIR spectra and DIM information (dependent on lactation stage; DLS) by using linear and quadratic modified Legendre polynomials. The coefficients of determination of ILS and DLS equations were 0.77 and 0.75, respectively, with standard error of calibration of 63g/d of CH4 for both calibration equations. These equations were applied to 1,674,763 milk MIR spectra from Holstein cows in the first 3 parities and between 5 and 365 DIM. The average CH4 indicators were 428, 444, and 448g/d by ILS and 444, 467, and 471g/d by DLS for cows in first, second, and third lactation, respectively. Behavior of the DLS indicator throughout the lactations was in agreement with the literature with values increasing between 0 and 100 DIM and decreasing thereafter. Conversely, the ILS indicator of CH4 emission decreased at the beginning of the lactation and increased until the end of the lactation, which differs from the literature. Therefore, the DLS indicator seems to better reflect biological processes that drive CH4 emissions than the ILS indicator. The ILS and DLS equations were applied to an independent data set, which included 59 respiration chamber measurements of CH4 obtained from animals of a different breed across a different production system. Results indicated that the DLS equation was much more robust than the ILS equation allowing development of indicators of CH4 emissions by dairy cows. Integration of DIM information into the prediction equation was found to be a good strategy to obtain biologically meaningful CH4 values from lactating cows by accounting for biological changes that occur throughout the lactation.


Assuntos
Bovinos/fisiologia , Lactação , Metano/análise , Leite/química , Espectrofotometria Infravermelho/veterinária , Animais , Feminino , Modelos Biológicos , Espectrofotometria Infravermelho/métodos
6.
J Dairy Sci ; 98(7): 4956-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25958288

RESUMO

Genetic parameters that considered tolerance for heat stress were estimated for production, udder health, and milk composition traits. Data included 202,733 test-day records for milk, fat, and protein yields, fat and protein percentages, somatic cell score (SCS), 10 individual milk fatty acids (FA) predicted by mid-infrared spectrometry, and 7 FA groups. Data were from 34,468 first-lactation Holstein cows in 862 herds in the Walloon region of Belgium and were collected between 2007 and 2010. Test-day records were merged with daily temperature-humidity index (THI) values based on meteorological records from public weather stations. The maximum distance between each farm and its corresponding weather station was 21km. Linear reaction norm models were used to estimate the intercept and slope responses of 23 traits to increasing THI values. Most yield and FA traits had phenotypic and genetic declines as THI increased, whereas SCS, C18:0, C18:1 cis-9, and 4 FA groups (unsaturated FA, monounsaturated FA, polyunsaturated FA, and long-chain FA) increased with THI. Moreover, the latter traits had the largest slope-to-intercept genetic variance ratios, which indicate that they are more affected by heat stress at high THI levels. Estimates of genetic correlations within trait between cold and hot environments were generally high (>0.80). However, lower estimates (<=0.67) were found for SCS, fat yield, and C18:1 cis-9, indicating that animals with the highest genetic merit for those traits in cold environments do not necessarily have the highest genetic merit for the same traits in hot environments. Among all traits, C18:1 cis-9 was the most sensitive to heat stress. As this trait is known to reflect body reserve mobilization, using its variations under hot conditions could be a very affordable milk biomarker of heat stress for dairy cattle expressing the equilibrium between intake and mobilization under warm conditions.


Assuntos
Bovinos/fisiologia , Mudança Climática , Resposta ao Choque Térmico , Leite/química , Leite/metabolismo , Animais , Bovinos/genética , Feminino , Lactação , Glândulas Mamárias Animais/fisiologia , Proteínas do Leite/análise
7.
J Dairy Sci ; 98(1): 692-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25468694

RESUMO

Body weight (BW) of dairy cows can be estimated using linear conformation traits (calculated BW; CBW), which are generally recorded only once during a lactation. However, predicted BW (PBW) throughout the lactation would be useful, e.g., at milk-recording dates allowing feed-intake prediction for advisory purposes. Therefore, a 2-step approach was developed to obtain PBW for each milk-recording date. In the first step, a random-regression test-day model was used with CBW as observations to predict PBW. The second step consisted in changing means and (co)variances of prior distributions for the additive genetic random effects of the test-day model by using priors derived from results of the first step to predict again PBW. A total of 25,061 CBW from 24,919 primiparous Holstein cows were computed using equations from literature. Using CBW as observations, PBW was then predicted over the whole lactation for 232,436 dates corresponding to 207,375milk-recording dates and 25,061 classification dates. Results showed that using both steps (the 2-step approach) provided more accurate predictions than using only the first step (the one-step approach). Based on the results of this preliminary study, BW of dairy cows could be predicted throughout the lactation using this procedure. These predictions could be useful in milk-recording systems to compute traits of interest (e.g., feed-intake prediction). The developed novel method is also flexible because actual direct measurements of BW can also be used together with CBW, the prediction model being able to accommodate different levels of accuracies of used BW phenotypes.


Assuntos
Peso Corporal , Bovinos/fisiologia , Indústria de Laticínios/métodos , Animais , Feminino , Lactação , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA