Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 473(7346): 226-9, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21562563

RESUMO

Dietary restriction is a robust means of extending adult lifespan and postponing age-related disease in many species, including yeast, nematode worms, flies and rodents. Studies of the genetic requirements for lifespan extension by dietary restriction in the nematode Caenorhabditis elegans have implicated a number of key molecules in this process, including the nutrient-sensing target of rapamycin (TOR) pathway and the Foxa transcription factor PHA-4 (ref. 7). However, little is known about the metabolic signals that coordinate the organismal response to dietary restriction and maintain homeostasis when nutrients are limited. The endocannabinoid system is an excellent candidate for such a role given its involvement in regulating nutrient intake and energy balance. Despite this, a direct role for endocannabinoid signalling in dietary restriction or lifespan determination has yet to be demonstrated, in part due to the apparent absence of endocannabinoid signalling pathways in model organisms that are amenable to lifespan analysis. N-acylethanolamines (NAEs) are lipid-derived signalling molecules, which include the mammalian endocannabinoid arachidonoyl ethanolamide. Here we identify NAEs in C. elegans, show that NAE abundance is reduced under dietary restriction and that NAE deficiency is sufficient to extend lifespan through a dietary restriction mechanism requiring PHA-4. Conversely, dietary supplementation with the nematode NAE eicosapentaenoyl ethanolamide not only inhibits dietary-restriction-induced lifespan extension in wild-type worms, but also suppresses lifespan extension in a TOR pathway mutant. This demonstrates a role for NAE signalling in ageing and indicates that NAEs represent a signal that coordinates nutrient status with metabolic changes that ultimately determine lifespan.


Assuntos
Caenorhabditis elegans/fisiologia , Dieta , Etanolaminas/metabolismo , Longevidade/fisiologia , Transdução de Sinais , Amidas/farmacologia , Amidoidrolases/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Regulação da Expressão Gênica no Desenvolvimento , Longevidade/efeitos dos fármacos , Mutação , Transativadores/metabolismo
2.
Nature ; 472(7342): 226-9, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21451522

RESUMO

Genetic studies indicate that protein homeostasis is a major contributor to metazoan longevity. Collapse of protein homeostasis results in protein misfolding cascades and the accumulation of insoluble protein fibrils and aggregates, such as amyloids. A group of small molecules, traditionally used in histopathology to stain amyloid in tissues, bind protein fibrils and slow aggregation in vitro and in cell culture. We proposed that treating animals with such compounds would promote protein homeostasis in vivo and increase longevity. Here we show that exposure of adult Caenorhabditis elegans to the amyloid-binding dye Thioflavin T (ThT) resulted in a profoundly extended lifespan and slowed ageing. ThT also suppressed pathological features of mutant metastable proteins and human ß-amyloid-associated toxicity. These beneficial effects of ThT depend on the protein homeostasis network regulator heat shock factor 1 (HSF-1), the stress resistance and longevity transcription factor SKN-1, molecular chaperones, autophagy and proteosomal functions. Our results demonstrate that pharmacological maintenance of the protein homeostatic network has a profound impact on ageing rates, prompting the development of novel therapeutic interventions against ageing and age-related diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Amiloide/metabolismo , Caenorhabditis elegans/metabolismo , Homeostase/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Proteínas/metabolismo , Tiazóis/farmacologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Autofagia , Benzotiazóis , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Curcumina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Fatores de Transcrição Forkhead , Humanos , Longevidade/fisiologia , Chaperonas Moleculares/metabolismo , Paralisia/tratamento farmacológico , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Análise de Sobrevida , Tiazóis/metabolismo , Fatores de Transcrição/metabolismo
3.
Exp Gerontol ; 43(10): 882-91, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18755260

RESUMO

The observation that long-lived and relatively healthy animals can be obtained by simple genetic manipulation prompts the search for chemical compounds that have similar effects. Since aging is the most important risk factor for many socially and economically important diseases, the discovery of a wide range of chemical modulators of aging in model organisms could prompt new strategies for attacking age-related disease such as diabetes, cancer and neurodegenerative disorders [Collins, J.J., Evason, K., Kornfeld, K., 2006. Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp. Gerontol.; Floyd, R.A., 2006. Nitrones as therapeutics in age-related diseases. Aging Cell 5, 51-57; Gill, M.S., 2006. Endocrine targets for pharmacological intervention in aging in Caenorhabditis elegans. Aging Cell 5, 23-30; Hefti, F.F., Bales, R., 2006. Regulatory issues in aging pharmacology. Aging Cell 5, 3-8]. Resistance to multiple types of stress is a common trait in long-lived genetic variants of a number of species; therefore, we have tested compounds that act as stress response mimetics. We have focused on compounds with antioxidant properties and identified those that confer thermal stress resistance in the nematode Caenorhabditis elegans. Some of these compounds (lipoic acid, propyl gallate, trolox and taxifolin) also extend the normal lifespan of this simple invertebrate, consistent with the general model that enhanced stress resistance slows aging.


Assuntos
Antioxidantes/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Sistema Endócrino/metabolismo , Longevidade/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes de Helmintos/efeitos dos fármacos , Genes de Helmintos/fisiologia , Longevidade/genética , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
4.
J Biol Chem ; 283(1): 350-357, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17959600

RESUMO

Lithium (Li(+)) has been used to treat mood affect disorders, including bipolar, for decades. This drug is neuroprotective and has several identified molecular targets. However, it has a narrow therapeutic range and the one or more underlying mechanisms of its therapeutic action are not understood. Here we describe a pharmacogenetic study of Li(+) in the nematode Caenorhabditis elegans. Exposure to Li(+) at clinically relevant concentrations throughout adulthood increases survival during normal aging (up to 46% median increase). Longevity is extended via a novel mechanism with altered expression of genes encoding nucleosome-associated functions. Li(+) treatment results in reduced expression of the worm ortholog of LSD-1 (T08D10.2), a histone demethylase; knockdown by RNA interference of T08D10.2 is sufficient to extend longevity ( approximately 25% median increase), suggesting Li(+) regulates survival by modulating histone methylation and chromatin structure.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Genoma Helmíntico , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Imuno-Histoquímica , Longevidade/efeitos dos fármacos , Longevidade/genética , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Análise de Sobrevida
5.
Biogerontology ; 7(4): 221-30, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16826446

RESUMO

Mild hormetic heat treatments early in life can significantly increase the lifespan of the nematode C. elegans. We have examined the effects of heat treatments at different ages and show that treatments early in life cause the largest increases in lifespan. We also find that repeated mild heat treatments throughout life have a larger effect on lifespan compared to a single mild heat treatment early in life. We hypothesize that the magnitude of the hormetic effect is related to the levels of heat shock protein expression. Following heat treatment young worms show a dramatic increase in the levels of the small heat shock protein HSP-16 whereas old worms are a 100-fold less responsive. The levels of the heat shock proteins HSP-4 and HSP-16 correlate well with the effects on lifespan by the hormetic treatments.


Assuntos
Caenorhabditis elegans/fisiologia , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Longevidade/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Análise de Sobrevida , Taxa de Sobrevida
6.
Ann N Y Acad Sci ; 1067: 120-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16803977

RESUMO

During the last three decades the soil nematode C. elegans has become a prominent model organism for studying aging. Initially research in the C. elegans aging field was focused on the genetics of aging and single gene mutations that dramatically increased the life span of the worm. Undoubtedly, the existence of such mutations is one of the main reasons for the popularity of the worm as model system for studying aging. However, today many different approaches are being used in the C. elegans aging field in addition to genetic manipulations that influence life span. For example, environmental manipulations such as caloric restriction and hormetic treatments, evolutionary studies, population studies, models of age-related diseases, and drug screening for compounds that extend life span are now being investigated using this nematode. This review will focus on the most recent developments in C. elegans aging research with the aim of illustrating the diversity of the field.


Assuntos
Envelhecimento/fisiologia , Caenorhabditis elegans/fisiologia , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Genes de Helmintos , Longevidade/genética , Longevidade/fisiologia , Mutação , Estresse Oxidativo
7.
Science ; 312(5778): 1381-5, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16741121

RESUMO

Checkpoints are evolutionarily conserved signaling mechanisms that arrest cell division and alter cellular stress resistance in response to DNA damage or stalled replication forks. To study the consequences of loss of checkpoint functions in whole animals, checkpoint genes were inactivated in the nematode C. elegans. We show that checkpoint proteins are not only essential for normal development but also determine adult somatic maintenance. Checkpoint proteins play a role in the survival of postmitotic adult cells.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/fisiologia , Mitose/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Sobrevivência Celular , Quinase 1 do Ponto de Checagem , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Mitose/genética , Mutação , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe , Transdução de Sinais , Células-Tronco/citologia
8.
FASEB J ; 19(12): 1716-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16099946

RESUMO

The mammalian Ku heterodimer has important roles in DNA double strand break repair, telomere maintenance, cell cycle checkpoint-arrest, tumor suppression, and cellular stress resistance. To investigate the evolutionarily conserved functions of Ku, we knocked down expression by RNA interference (RNAi) of Ku genes in C. elegans. We found that C. elegans Ku70 (CKU-70) is required for resistance to genotoxic stress, regulates cytotoxic stress responses, and influences aging. The latter effects are dependent on an IGF-1/insulin-like signaling pathway previously shown to affect life span. Reduction of CKU-70 activity amplifies the aging phenotype of long-lived insulin receptor daf-2 mutations in a daf-16-dependent manner. These observations support the view that organismal stress resistance determines life span and Ku70 modulates these effects.


Assuntos
Antígenos Nucleares/fisiologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Insulina/metabolismo , Longevidade , Envelhecimento , Animais , Antígenos Nucleares/química , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA/química , Regulação para Baixo , Vetores Genéticos , Genótipo , Fator de Crescimento Insulin-Like I/metabolismo , Autoantígeno Ku , Metanossulfonato de Metila/farmacologia , Mutação , Fenótipo , Interferência de RNA , Receptor de Insulina , Transdução de Sinais , Fatores de Tempo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...