Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1330927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384757

RESUMO

Holocentric karyotypes are assumed to rapidly evolve through chromosome fusions and fissions due to the diffuse nature of their centromeres. Here, we took advantage of the recent availability of a chromosome-scale reference genome for Rhynchospora breviuscula, a model species of this holocentric genus, and developed the first set of oligo-based barcode probes for a holocentric plant. These probes were applied to 13 additional species of the genus, aiming to investigate the evolutionary dynamics driving the karyotype evolution in Rhynchospora. The two sets of probes were composed of 27,392 (green) and 23,968 (magenta) oligonucleotides (45-nt long), and generated 15 distinct FISH signals as a unique barcode pattern for the identification of all five chromosome pairs of the R. breviuscula karyotype. Oligo-FISH comparative analyzes revealed different types of rearrangements, such as fusions, fissions, putative inversions and translocations, as well as genomic duplications among the analyzed species. Two rounds of whole genome duplication (WGD) were demonstrated in R. pubera, but both analyzed accessions differed in the complex chain of events that gave rise to its large, structurally diploidized karyotypes with 2n = 10 or 12. Considering the phylogenetic relationships and divergence time of the species, the specificity and synteny of the probes were maintained up to species with a divergence time of ~25 My. However, karyotype divergence in more distant species hindered chromosome mapping and the inference of specific events. This barcoding system is a powerful tool to study chromosomal variations and genomic evolution in holocentric chromosomes of Rhynchospora species.

2.
Genet. mol. biol ; 28(1): 129-139, Jan.-Mar. 2005. ilus, tab
Artigo em Inglês | LILACS | ID: lil-399629

RESUMO

The association of cytogenetic and molecular techniques has contributed to the analysis of chromosome organization and phylogeny in plants. The fluorochrome GC-specific CMA3, fluorescent in situ hybridization (FISH) and RAPD (Random Amplified Polymorphic DNA) markers were used to investigate chromosome structure and genetic relationships in Hypochaeris (Asteraceae). Seven species native to South America, and two species introduced from Europe (H. glabra and Hypochaeris sp) were studied. FISH with rDNA probes identified one or two loci of 18S-5.8S-25S rDNA in the South American Hypochaeris species and one locus in the European species. Only one 5S rDNA locus was seen in all species studied. Blocks of GC-rich heterochromatin (CMA-positive bands) associated to 18S-5.8S-25SrDNA loci were detected in all species investigated. Co-location of 5S rDNA and CMA bands was also observed, except for three South American species and Hypochaeris sp. In two South American species, additional CMA bands not related to rDNA were observed on the long arm of chromosome 2, near to the centromere. Hypochaeris glabra exhibited additional CMA-positive signals distributed at pericentromeric regions, on the short arms of all chromosomes. A total of 122 RAPD markers were used to determine the genetic relationships among species. The level of polymorphism was very high, revealing two genetic groups comprising the South American and the European species, thus supporting a previous hypothesis of monophyly of the South American Hypochaeris species. The coefficients of genetic similarity between European and South American species were 0.35, on average. Polymorphism was also high within the two groups. The genetic associations observed with RAPD markers were consistent with chromosome characteristics. Species carrying similar distribution of 45S rDNA loci and CMA-positive signals were included in the same group revealed by RAPDs. Cytogenetic and molecular data support the view that not only chromosome rearrangements, but also changes in DNA sequence took place during the diversification of the South American Hypochaeris species.


Assuntos
Asteraceae , Bandeamento Cromossômico , Brasil , Hibridização in Situ Fluorescente , Cariotipagem , Filogenia , Técnica de Amplificação ao Acaso de DNA Polimórfico
3.
Genet. mol. biol ; 26(2): 199-201, Jun. 2003. ilus
Artigo em Inglês | LILACS | ID: lil-345971

RESUMO

Rhynchospora tenuis Link (Cyperaceae) is a weed widely distributed in Brazil that presents a small number of holocentric chromosomes (2n = 4) with some autopolyploid populations (2n = 8). The haploid number n = 2 is considered as a derivative of the base number x = 5. 45S rDNA probes and telomeric DNA were hybridized in both chromosome races of R. tenuis, looking for indications of chromosome fusions. The results showed that hybridization sites of the telomeric probe were restricted to end chromosome regions whereas rDNA sites were terminally located. The chromosome race with n = 4 exhibited a doubled number of sites, with similar size and location to the hybridized sequences, confirming its autopolyploid origin. Furthermore, the terminal location of the single 45S rDNA site in the 2n = 4 race suggested that disploid reduction in Rhynchospora, from n = 5 to n = 2, was followed by elimination or reorganization events, keeping the terminal distribution of these sites, as in an others species of the genus


Assuntos
DNA Ribossômico , Hibridização in Situ Fluorescente , Plantas , Telomerase , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA