Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 245: 109957, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38843983

RESUMO

Clouding of the eye lens or cataract is an age-related anomaly that affects middle-aged humans. Exploration of the etiology points to a great extent to oxidative stress due to different forms of reactive oxygen species/metabolites such as Hydrogen peroxide (H2O2) that are generated due to intracellular metabolism and environmental factors like radiation. If accumulated and left unchecked, the imbalance between the production and degradation of H2O2 in the lens could lead to cataracts. Our objective was to explore ex vivo the effects of H2O2 on lens physiology. We investigated transparency, intracellular pH (pHi), intercellular gap junction coupling (GJC), hydrostatic pressure (HP) and membrane water permeability after subjecting two-month-old C57 wild-type (WT) mouse lenses for 3 h or 8 h in lens saline containing 50 µM H2O2; the results were compared with control lenses incubated in the saline without H2O2. There was a significant decrease in lens transparency in H2O2-treated lenses. In control lenses, pHi decreases from ∼7.34 in the surface fiber cells to 6.64 in the center. Experimental lenses exposed to H2O2 for 8 h showed a significant decrease in surface pH (from 7.34 to 6.86) and central pH (from 6.64 to 6.56), compared to the controls. There was a significant increase in GJC resistance in the differentiating (12-fold) and mature (1.4-fold) fiber cells compared to the control. Experimental lenses also showed a significant increase in HP which was ∼2-fold higher at the junction between the differentiating and mature fiber cells and ∼1.5-fold higher at the center compared to these locations in control lenses; HP at the surface was 0 mm Hg in either type lens. Fiber cell membrane water permeability significantly increased in H2O2-exposed lenses compared to controls. Our data demonstrate that elevated levels of lens intracellular H2O2 caused a decrease in intracellular pH and led to acidosis which most likely uncoupled GJs, and increased AQP0-dependent membrane water permeability causing a consequent rise in HP. We infer that an abnormal increase in intracellular H2O2 could induce acidosis, cause oxidative stress, alter lens microcirculation, and lead to the development of accelerated lens opacity and age-related cataracts.

2.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501773

RESUMO

The endothelial layer of the cornea plays a critical role in regulating its hydration by actively controlling fluid intake in the tissue via transporting the excess fluid out to the aqueous humor. A damaged corneal endothelial layer leads to perturbations in tissue hydration and edema, which can impact corneal transparency and visual acuity. We utilized a non-contact terahertz (THz) scanner designed for imaging spherical targets to discriminate between ex vivo corneal samples with intact and damaged endothelial layers. To create varying grades of corneal edema, the intraocular pressures of the whole porcine eye globe samples (n = 19) were increased to either 25, 35 or 45 mmHg for 4 h before returning to normal pressure levels at 15 mmHg for the remaining 4 h. Changes in tissue hydration were assessed by differences in spectral slopes between 0.4 and 0.8 THz. Our results indicate that the THz response of the corneal samples can vary according to the differences in the endothelial cell density, as determined by SEM imaging. We show that this spectroscopic difference is statistically significant and can be used to assess the intactness of the endothelial layer. These results demonstrate that THz can noninvasively assess the corneal endothelium and provide valuable complimentary information for the study and diagnosis of corneal diseases that perturb the tissue hydration.


Assuntos
Doenças da Córnea , Espectroscopia Terahertz , Suínos , Animais , Máquina de Vetores de Suporte , Córnea/fisiologia , Endotélio Corneano/diagnóstico por imagem , Doenças da Córnea/diagnóstico , Espectroscopia Terahertz/métodos , Edema
3.
Mol Vis ; 28: 11-20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400989

RESUMO

Purpose: Glutathione peroxidase 1 (GPX1) and catalase are expressed in the lens epithelial cells and cortical fiber cells, where they detoxify H2O2 to reduce oxidative stress, which is a major cause for cataractogenesis. We sought to find out, between these two enzymes, which is critical for transparency and homeostasis in the aging lens by investigating alterations in the lens's refractive property, transparency, and gap junction coupling (GJC) resistance. Methods: Wild-type (C57BL/6J), GPX1 knockout (GPX1-/-) and catalase knockout (CAT-/-) mice were used. Lens transparency was quantified using dark-field images and ImageJ software. For optical aberration evaluation, each lens was placed over a copper electron microscopy specimen grid; the grid image was captured through the lens using a digital camera attached to a dark-field binocular microscope. Optical aberrations were assessed by the quality of the magnified gridlines. Microelectrode-based intact lens intracellular impedance was measured to determine GJC resistance. Results: In contrast to wild-type (WT) and CAT-/- lenses, GPX1-/- lenses developed accelerated age-related cataracts. While two-month-old lenses were normal, at nine months of age, GPX1-/- mice started to show the development of abnormal optical distortion aberrations and loss of transparency. At 12 months of age, GPX1-/- lenses developed significant opacity and abnormal optical distortion aberrations compared to CAT-/- and WT (p<0.001); these aberrations gradually increased with age and matured into cataracts by 24 months of age. There was also a significant increase (p<0.001) in GJC resistance in the differentiating and mature fiber cells of GPX1-/- lenses at 12 months of age compared to that in similar areas of age-matched CAT-/- and WT lenses. Conclusions: Changes in the refractive and physiological properties of the lens occurred before cataract formation in GPX1-/- lenses but not in CAT-/- lenses. GPX1 is more critical than catalase for lens transparency, optical quality, and homeostasis in the aging lens under normal physiological conditions. GPX1 could be a promising therapeutic target for developing potential strategies to reduce adverse oxidative stress and delay/treat/prevent age-related cataracts.


Assuntos
Catarata , Cristalino , Envelhecimento , Animais , Catalase/genética , Catarata/genética , Glutationa Peroxidase , Peróxido de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glutationa Peroxidase GPX1
4.
Exp Eye Res ; 209: 108645, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087204

RESUMO

Lens-specific beaded filament (BF) proteins CP49 and filensin interact with the C-terminus of the water channel protein Aquaporin 0 (AQP0). Previously we have reported that a C-terminally end-deleted AQP0-expressing transgenic mouse model AQP0ΔC/ΔC developed abnormal optical aberrations in the lens. This investigation was undertaken to find out whether the total loss of the BF structural proteins alter the optical properties of the lens and cause optical aberrations similar to those in AQP0ΔC/ΔC lenses; also, to map the changes in the optical quality as a function of age in the single or double BF protein knockouts as well as to assess whether there is any significant change in the water channel function of AQP0 in these knockouts. A double knockout mouse (2xKO) model for CP49 and filensin was developed by crossing CP49-KO and filensin-KO mice. Wild type, CP49-KO, filensin-KO, and 2xKO lenses at different ages, and AQP0ΔC/ΔC lenses at postnatal day-17 were imaged through the optical axis and compared for optical quality and focusing property. All three knockout models showed loss of transparency, and development of abnormal optical distortion aberration similar to that in AQP0ΔC/ΔC. Copper grid focusing by the lenses at 6, 9 and 12 months of age showed an increase in aberrations as age advanced. With progression in age, the grid images produced by the lenses of all KO models showed a transition from a positive barrel distortion aberration to a pincushion distortion aberration with the formation of three distinct aberration zones similar to those produced by AQP0ΔC/ΔC lenses. Water permeability of fiber cell membrane vesicles prepared from CP49-KO, filensin-KO and 2xKO models, measured using the osmotic shrinking method, remained similar to that of the wild type without any statistically significant alteration (P > 0.05). Western blotting and quantification revealed the expression of comparable quantities of AQP0 in all three BF protein KOs. Our study reveals that loss of single or both beaded filament proteins significantly affect lens refractive index gradient, transparency and focusing ability in an age-dependent manner and the interaction of BF proteins with AQP0 is critical for the proper functioning of the lens. The presence of BF proteins is necessary to prevent abnormal optical aberrations and maintain homeostasis in the aging lens.


Assuntos
Aquaporinas/genética , Catarata/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica , Proteínas de Filamentos Intermediários/genética , Cristalino/metabolismo , RNA/genética , Animais , Aquaporinas/biossíntese , Western Blotting , Catarata/metabolismo , Catarata/fisiopatologia , Modelos Animais de Doenças , Proteínas do Olho/biossíntese , Proteínas de Filamentos Intermediários/biossíntese , Cristalino/patologia , Cristalino/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Commun Biol ; 4(1): 325, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707565

RESUMO

Congenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.


Assuntos
Aquaporinas/genética , Catarata/congênito , Conexinas/genética , Cristalinas/genética , Proteínas do Olho/genética , Cristalino/anormalidades , Mutação , Animais , Aquaporinas/metabolismo , Catarata/metabolismo , Catarata/patologia , Embrião de Galinha , Conexinas/metabolismo , Cristalinas/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Técnicas de Transferência de Genes , Predisposição Genética para Doença , Vetores Genéticos , Cristalino/metabolismo , Microinjeções , Fenótipo , Retroviridae/genética , Retroviridae/metabolismo
6.
Biochem Biophys Res Commun ; 524(4): 1025-1029, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32063362

RESUMO

High levels of reactive oxygen species such as hydrogen peroxide (H2O2) cause oxidative stress in the lens and lead to cataractogenesis. The present investigation was undertaken to find out whether the mammalian lens aquaporins (AQPs) 0, 1, and 5 perform H2O2 transport across the plasma membrane to reduce oxidative stress. Our in vitro cell culture and ex vivo lens experiments demonstrated that in addition to the established water transport role, mouse AQP0, AQP1 and AQP5 facilitate transmembrane H2O2 transport and function as peroxiporins. Human lens epithelial cells expressing AQP1, AQP5 and AQP8, when treated with 50 µM HgCl2 water channel inhibitor showed a significant reduction in H2O2 transport. Data obtained from the experiments involving H2O2-degrading enzyme glutathione peroxidase 1 (GPX1) knockout lenses showed H2O2 accumulation, suggesting H2O2 transport level by AQPs in the lens is regulated by GPX1. Under hyperglycemic conditions, there was an increased loss of transparency, and enhanced production and retention of H2O2 in AQP5-/- lenses compared to similarly-treated WT lenses. Overall, the results show that lens AQPs function as peroxiporins and cooperate with GPX1 to maintain lens H2O2 homeostasis to prevent oxidative stress, highlighting AQPs and GPX1 as promising therapeutic drug targets to delay/treat/prevent age-related lens cataracts.


Assuntos
Aquaporinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Cristalino/metabolismo , Animais , Aquaporina 1/metabolismo , Aquaporina 5/metabolismo , Transporte Biológico , Linhagem Celular , Membrana Celular/metabolismo , Cães , Proteínas do Olho/metabolismo , Humanos , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL
7.
Exp Eye Res ; 185: 107682, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31150637

RESUMO

This investigation was undertaken to find out whether the positive charges in the Extracellular Loops A (ELA) and C (ELC) of Aquaporin 0 (AQP0) are involved in lens fiber cell-to-cell adhesion (CTCA), and the possible mechanism of CTCA. AQP0 ELA or ELC was substituted with the corresponding AQP1 loop via Polymerase Chain Reaction. Positively charged arginine (R) and histidine (H) of mouse AQP0 ELA and ELC were substituted individually with glutamine (Q) to create R33Q, H40Q, R113Q and H122Q by mutagenesis. cRNA expression, immunostaining, Förster Resonance Energy Transfer (FRET) studies and protein analyses showed localization of all mutants except AQP0-AQP1ELC chimera (AQP0 ELC substituted with AQP1 ELC) at the plasma membrane. Osmotic Swelling Assay revealed comparable water permeability (Pf) among AQP0-AQP1ELA, R33Q, R113Q, and WT. CTCA assay demonstrated a significant reduction in adhesion in all mutants compared to the WT (14-73%) suggesting the importance of the conserved positively charged residues of ELA and ELC for adhesion. Studies involving AQP0-transfected L-cells, and lipid vesicles indicated that CTCA was due to the electrostatic interaction between the positively charged amino acids of AQP0 extracellular loops and the negative charges of the plasma membrane. Schematic models are provided to illustrate the mechanism.


Assuntos
Aquaporinas/metabolismo , Arginina/metabolismo , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Proteínas do Olho/metabolismo , Histidina/metabolismo , Cristalino/metabolismo , Animais , Western Blotting , Cães , Feminino , Cristalino/química , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Plasmídeos , Reação em Cadeia da Polimerase , RNA/genética , Xenopus laevis
8.
Invest Ophthalmol Vis Sci ; 60(7): 2525-2531, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31195409

RESUMO

Purpose: We reported previously that aquaporin 0 (AQP0) modulates lens fiber cell gap junction (GJ) channel function. The present study was conducted to find out whether the C-terminal end of AQP0 is involved in this regulation. Methods: A mouse model, AQP0ΔC/ΔC, was genetically engineered to express AQP0 with 1-246 amino acids, without the normal intact AQP0 (1-263 amino acids) in the lens. Transparency and focusing of the lens were assessed. Intracellular impedance was measured to determine GJ coupling resistance. Intracellular hydrostatic pressure (HP) was also determined. Western blotting was performed to determine connexin (Cx46 and Cx50) expression levels. Results: At postnatal day 10, AQP0ΔC/ΔC mouse lenses relative to age-matched wild-type lenses showed loss of transparency and abnormal optical distortion; GJ coupling resistance increased in the differentiating (1.6-fold) and mature (8-fold) fiber cells; lens HP increased approximately 1.5-fold at the junction between the differentiating and mature fiber cells and approximately 2.0-fold in the center; there was no significant change (P > 0.05) in expression levels of Cx46 or Cx50. Conclusions: The increase in GJ coupling resistance was not associated with reduced connexin expression, suggesting either a reduction in the open probability or some physical change in plaque location. The increase in resistance was significantly greater than the increase in HP, suggesting less pressure-driven water flow through each open GJ channel. These changes may lead to a loss of transparency and abnormal optical distortion. Overall, our data demonstrate the C-terminal end of AQP0 is involved in modulating GJ coupling to maintain lens transparency and homeostasis.


Assuntos
Aquaporinas/fisiologia , Proteínas do Olho/fisiologia , Junções Comunicantes/metabolismo , Cristalino/fisiologia , Animais , Aquaporinas/química , Western Blotting , Catarata/patologia , Conexinas/metabolismo , Proteínas do Olho/química , Técnicas de Introdução de Genes , Homeostase , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Terciária de Proteína
9.
Invest Ophthalmol Vis Sci ; 60(4): 858-867, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821811

RESUMO

Purpose: Investigate the effects of the absence of 17 amino acids at the C-terminal end of Aquaporin 0 (AQP0) on lens transparency, focusing property, and homeostasis. Methods: A knockin (KI) mouse model (AQP0ΔC/ΔC) was developed to express AQP0 only as the end-cleaved form in the lens. For this, AQP0 was genetically engineered as C-terminally end-cleaved with amino acids 1 to 246, instead of the full length 1 to 263 of the wild type (WT). After verifying the KI integration into the genome and its expression, the mouse model was bred for several generations. AQP0 KI homozygous (AQP0ΔC/ΔC) and heterozygous (AQP0+/ΔC) lenses were imaged and analyzed at different developmental stages for transparency. Correspondingly, aberrations in the lens were characterized using the standard metal grid focusing method. Data were compared with age-matched WT, AQP0 knockout (AQP0-/-), and AQP0 heterozygous (AQP0+/-) lenses. Results: AQP0ΔC/ΔC lenses were transparent throughout the embryonic development and until postnatal day 15 (P15) in contrast to age-matched AQP0-/- lenses, which developed cataract at embryonic stage itself. However, there was distortion aberration in AQP0ΔC/ΔC lens at P5; after P15, cataract began to develop and progressed faster surpassing that of age-matched AQP0-/- lenses. AQP0+/ΔC lenses were transparent even at the age of 1 year in contrast to AQP0+/- lenses; however, there was distortion aberration starting at P15. Conclusions: A specific distribution profile of intact and end-cleaved AQP0 from the outer cortex to the inner nucleus is required in the lens for establishing refractive index gradient to enable proper focusing without aberrations and for maintaining transparency.


Assuntos
Sequência de Aminoácidos/genética , Aquaporinas/genética , Catarata/genética , Proteínas do Olho/genética , Cristalino/patologia , Erros de Refração/genética , Deleção de Sequência/genética , Animais , Western Blotting , Catarata/embriologia , Catarata/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Erros de Refração/embriologia , Erros de Refração/fisiopatologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção
10.
Biochem Biophys Res Commun ; 511(3): 626-630, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30826060

RESUMO

The purpose of this investigation was to find out whether C-terminally end-cleaved aquaporin 0 (AQP0), that is present predominantly in the lens mature fiber cells of the WT, functions as a water channel and a cell-to-cell adhesion (CTCA) protein in a knockin (KI) mouse model (AQP0ΔC/ΔC) that does not express intact AQP0. A genetically engineered KI mouse model, AQP0ΔC/ΔC, expressing only end-cleaved AQP0 was developed. This model expresses 1-246 amino acids of AQP0, instead of the full length 1-263 amino acids. Lens transparency of postnatal day 10 (P10) was analyzed qualitatively by dark field imaging. WT, AQP0+/- and AQP0+/ΔC lenses were transparent; AQP0-/- and AQP0ΔC/ΔC mouse lenses displayed loss of transparency. Lens fiber cell membrane vesicles (FCMVs) were prepared from wild type (WT), AQP0 heterozygous (AQP0+/-), AQP0 knockout (AQP0-/-), AQP0+/ΔC and AQP0ΔC/ΔC; water permeability (Pf) was measured using the osmotic shrinking method. CTCA assay was performed using adhesion-deficient L-cells and FCMVs prepared from the abovementioned genotypes. FCMVs of AQP0+/- and AQP0-/- showed a statistically significant reduction (P < 0.001) in Pf and CTCA compared to those of WT. AQP0+/ΔC and AQP0ΔC/ΔC FCMVs exhibited no statistically significant alteration (P > 0.05) in Pf compared to those of WT. However, CTCA of AQP0+/ΔC AQP0ΔC/ΔC FCMVs was significantly higher (P < 0.001) than that of WT FCMVs. Our experiments clearly show that C-terminally end-cleaved AQP0 can function both as a water channel and a CTCA molecule in the lens fiber cell membranes. Also, end-truncation plays an important role in increasing the CTCA between fiber cells.


Assuntos
Aquaporinas/metabolismo , Proteínas do Olho/metabolismo , Cristalino/metabolismo , Animais , Aquaporinas/química , Aquaporinas/genética , Catarata/genética , Catarata/metabolismo , Adesão Celular , Permeabilidade da Membrana Celular , Proteínas do Olho/química , Proteínas do Olho/genética , Cristalino/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Água/metabolismo
11.
Biochem Biophys Res Commun ; 506(1): 284-289, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30348525

RESUMO

Cell-to-cell adhesion (CTCA), which is key for establishing lens transparency, is a critical function of Aquaporin 0 (AQP0). The aim of this investigation was to find out the possible mechanism by which AQP0 exerts CTCA between fiber cells, since there are two proposals currently, either an AQP0-AQP0 interaction or an AQP0-lipid interaction. We studied the mechanism of AQP0-induced CTCA in intact AQP0 and C-terminally cleaved AQP0 (CTC-AQP0). Assays showed CTCA between L-cells transfected with intact AQP0 or CTC-AQP0 and parental L-cells indicating AQP0-membrane interaction. Both forms of AQP0 significantly (P < 0.001) promoted adhesion to negatively charged l-α-phosphatidylserine lipid vesicles signifying AQP0-lipid interaction. AQP0-expressing L-cells also promoted adhesion of WT and AQP0-KO mouse lens fiber cell membrane vesicles (FCMVs) significantly (P < 0.001). However, when FCMVs of WT or AQP0-KO were plated over parental L-cells, only WT vesicles adhered significantly, corroborating AQP0-membrane interaction. After incubating with extracellular domain-specific AQP0 antibody, L-cells expressing intact AQP0 or CTC-AQP0 showed a significant reduction (P < 0.001) in the adhesion of AQP0-KO FCMVs indicating extracellular loop involvement in CTCA. WT FCMVs from outer cortex and inner cortex promoted adhesion to parental L-cells, without any statistically significant difference in adhesion efficiency (P > 0.05). Ultrastructure studies of WT, AQP0-KO and transgenic lenses showed AQP0 is critical for fiber CTCA and compaction. The data collected clearly demonstrate that the positively charged amino acids in the AQP0 extracellular loop domains interact with the negatively charged lipids in the plasma membrane to promote CTCA for compaction of fiber cells.


Assuntos
Aquaporinas/metabolismo , Adesão Celular/efeitos dos fármacos , Proteínas do Olho/metabolismo , Cristalino/citologia , Animais , Lipossomos/metabolismo , Membranas Artificiais , Camundongos , Fosfatidilserinas/metabolismo , Eletricidade Estática
12.
Exp Eye Res ; 172: 152-158, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660329

RESUMO

Aquaporins (AQPs), ordinarily regarded as water channels, have recently been shown to participate in other cellular functions such as cell-to-cell adhesion, cell migration, cell proliferation etc. The current investigation was undertaken to find out whether AQP5 water channel plays a role in corneal epithelial wound healing. Expression of AQP5 in mouse cornea and transfected Madin-Darby canine kidney (MDCK) cells was detected using immunofluorescence or EGFP tag. Cell migration and proliferation, the two major events in wound healing, were studied in vitro using cell culture scratch-wound healing model and cell proliferation assay, in vivo by conducting wound healing experiments on corneas of wild-type and AQP5 knockout mouse model and ex vivo on corneal epithelial cells isolated from wild type and AQP5 knockout mice. MDCK cells stably expressing AQP5 showed significantly higher levels of cell migration and proliferation compared to control cells. Likewise, corneal epithelial cells of wild type mouse with innate AQP5 exhibited faster wound healing than those of AQP5 knockout in vivo and under ex vivo culture conditions. In vitro, in vivo and ex vivo studies showed that presence of AQP5 improved cell migration, proliferation and wound healing. The data collected suggest that AQP5 plays a significant role in corneal epithelial wound healing.


Assuntos
Aquaporina 5/fisiologia , Movimento Celular/fisiologia , Reepitelização/fisiologia , Cicatrização/fisiologia , Animais , Western Blotting , Técnicas de Cultura de Células , Proliferação de Células/fisiologia , Córnea/metabolismo , Cães , Epitélio Corneano/fisiologia , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde/metabolismo , Células Madin Darby de Rim Canino/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transfecção
13.
Invest Ophthalmol Vis Sci ; 58(14): 6006-6019, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196765

RESUMO

Purpose: The objective of this study was to understand the molecular and physiologic mechanisms behind the lens cataract differences in Aquaporin 0-knockout-Heterozygous (AQP0-Htz) mice developed in C57 and FVB (lacks beaded filaments [BFs]) strains. Methods: Lens transparency was studied using dark field light microscopy. Water permeability (Pf) was measured in fiber cell membrane vesicles. Western blotting/immunostaining was performed to verify expression of BF proteins and connexins. Microelectrode-based intact lens intracellular impedance was measured to determine gap junction (GJ) coupling resistance. Lens intracellular hydrostatic pressure (HP) was determined using a microelectrode/manometer system. Results: Lens opacity and spherical aberration were more distinct in AQP0-Htz lenses from FVB than C57 strains. In either background, compared to wild type (WT), AQP0-Htz lenses showed decreased Pf (approximately 50%), which was restored by transgenic expression of AQP1 (TgAQP1/AQP0-Htz), but the opacities and differences between FVB and C57 persisted. Western blotting revealed no change in connexin expression levels. However, in C57 AQP0-Htz and TgAQP1/AQP0-Htz lenses, GJ coupling resistance decreased approximately 2.8-fold and the HP gradient decreased approximately 1.9-fold. Increased Pf in TgAQP1/AQP0-Htz did not alter GJ coupling resistance or HP. Conclusions: In C57 AQP0-Htz lenses, GJ coupling resistance decreased. HP reduction was smaller than the coupling resistance reduction, a reflection of an increase in fluid circulation, which is one reason for the less severe cataract in C57 than FVB. Overall, our results suggest that AQP0 modulates GJs in the presence of BF proteins to maintain lens transparency and homeostasis.


Assuntos
Aquaporina 1/genética , Catarata/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica , Proteínas de Filamentos Intermediários/genética , Cristalino/metabolismo , RNA/genética , Animais , Aquaporina 1/biossíntese , Western Blotting , Catarata/metabolismo , Catarata/patologia , Modelos Animais de Doenças , Impedância Elétrica , Proteínas do Olho/biossíntese , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Genótipo , Heterozigoto , Proteínas de Filamentos Intermediários/biossíntese , Cristalino/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microeletrodos
14.
Chem Biol Drug Des ; 87(5): 794-805, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26685080

RESUMO

Aquaporins (AQPs) are a family of membrane proteins that function as channels facilitating water transport in response to osmotic gradients. These play critical roles in several normal physiological and pathological states and are targets for drug discovery. Selective inhibition of the AQP1 water channel may provide a new approach for the treatment of several disorders including ocular hypertension/glaucoma, congestive heart failure, brain swelling associated with a stroke, corneal and macular edema, pulmonary edema, and otic disorders such as hearing loss and vertigo. We developed a high-throughput assay to screen a library of compounds as potential AQP1 modulators by monitoring the fluorescence dequenching of entrapped calcein in a confluent layer of AQP1-overexpressing CHO cells that were exposed to a hypotonic shock. Promising candidates were tested in a Xenopus oocyte-swelling assay, which confirmed the identification of two lead classes of compounds belonging to aromatic sulfonamides and dihydrobenzofurans with IC50 s in the low micromolar range. These selected compounds directly inhibited water transport in AQP1-enriched stripped erythrocyte ghosts and in proteoliposomes reconstituted with purified AQP1. Validation of these lead compounds, by the three independent assays, establishes a set of attractive AQP1 blockers for developing novel, small-molecule functional modulators of human AQP1.


Assuntos
Aquaporina 1/antagonistas & inibidores , Animais , Células CHO , Cricetinae , Cricetulus , Humanos
15.
Biochem Biophys Res Commun ; 462(4): 339-45, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25960294

RESUMO

Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer fiber cell shape, architecture and integrity. To our knowledge, this is the first report identifying the involvement of an aquaporin in lens biomechanics. Since accommodation is required in human lenses for proper focusing, alteration in the adhesion and/or water channel functions of AQP0 could contribute to presbyopia.


Assuntos
Aquaporinas/fisiologia , Proteínas do Olho/fisiologia , Cristalino/fisiologia , Animais , Fenômenos Biomecânicos , Cristalino/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase
16.
Biochem Biophys Res Commun ; 452(4): 986-91, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25229686

RESUMO

Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel and as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0(+/-)) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0(+/)(-)/AQP1(+/)(-)) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS-PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26-24kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (Pf) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA. Transmission and scanning electron micrographs of lenses of both mouse models showed increased extracellular space between fiber cells. Water content determination study showed increase in water in the lenses of these mouse models. In summary, lens transparency, CTCA and compact packing of fiber cells were affected due to the loss of 50% AQP0 leading to larger extracellular space, more water content and SA, possibly due to alteration in RING. To our knowledge, this is the first report identifying the role of AQP0 in RING development to ward off lens SA during focusing.


Assuntos
Aquaporinas/metabolismo , Proteínas do Olho/metabolismo , Cristalino/patologia , Cristalino/fisiopatologia , Refração Ocular , Erros de Refração/patologia , Erros de Refração/fisiopatologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Biochim Biophys Acta ; 1840(9): 2862-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24821012

RESUMO

BACKGROUND: Investigate the impact of natural N- or C-terminal post-translational truncations of lens mature fiber cell Aquaporin 0 (AQP0) on water permeability (Pw) and cell-to-cell adhesion (CTCA) functions. METHODS: The following deletions/truncations were created by site-directed mutagenesis (designations in parentheses): Amino acid residues (AA) 2-6 (AQP0-N-del-2-6), AA235-263 (AQP0-1-234), AA239-263 (AQP0-1-238), AA244-263 (AQP0-1-243), AA247-263 (AQP0-1-246), AA250-263 (AQP0-1-249) and AA260-263 (AQP0-1-259). Protein expression was studied using immunostaining, fluorescent tags and organelle-specific markers. Pw was tested by expressing the respective complementary ribonucleic acid (cRNA) in Xenopus oocytes and conducting osmotic swelling assay. CTCA was assessed by transfecting intact or mutant AQP0 into adhesion-deficient L-cells and performing cell aggregation and adhesion assays. RESULTS: AQP0-1-234 and AQP0-1-238 did not traffic to the plasma membrane. Trafficking of AQP0-N-del-2-6 and AQP0-1-243 was reduced causing decreased membrane Pw and CTCA. AQP0-1-246, AQP0-1-249 and AQP0-1-259 mutants trafficked properly and functioned normally. Pw and CTCA functions of the mutants were directly proportional to the respective amount of AQP0 expressed at the plasma membrane and remained comparable to those of intact AQP0 (AQP0-1-263). CONCLUSIONS: Post-translational truncation of N- or C-terminal end amino acids does not alter the basal water permeability of AQP0 or its adhesive functions. AQP0 may play a role in adjusting the refractive index to prevent spherical aberration in the constantly growing lens. GENERAL SIGNIFICANCE: Similar studies can be extended to other lens proteins which undergo post-translational truncations to find out how they assist the lens to maintain transparency and homeostasis for proper focusing of objects on to the retina.


Assuntos
Aquaporinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Proteínas do Olho/metabolismo , Cristalino/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Substituição de Aminoácidos , Animais , Aquaporinas/genética , Moléculas de Adesão Celular/genética , Membrana Celular/genética , Proteínas do Olho/genética , Cristalino/citologia , Camundongos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Oócitos , Transporte Proteico/fisiologia , Xenopus laevis
18.
Exp Eye Res ; 116: 371-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24120416

RESUMO

Aquaporin 0 (AQP0) performs dual functions in the lens fiber cells, as a water pore and as a cell-to-cell adhesion molecule. Mutations in AQP0 cause severe lens cataract in both humans and mice. An arginine to cysteine missense mutation at amino acid 33 (R33C) produced congenital autosomal dominant cataract in a Chinese family for five generations. We re-created this mutation in wild type human AQP0 (WT-AQP0) cDNA by site-directed mutagenesis, and cloned and expressed the mutant AQP0 (AQP0-R33C) in heterologous expression systems. Mutant AQP0-R33C showed proper trafficking and membrane localization like WT-AQP0. Functional studies conducted in Xenopus oocytes showed no significant difference (P > 0.05) in water permeability between AQP0-R33C and WT-AQP0. However, the cell-to-cell adhesion property of AQP0-R33C was significantly reduced (P < 0.001) compared to that of WT-AQP0, indicated by cell aggregation and cell-to-cell adhesion assays. Scrape-loading assay using Lucifer Yellow dye showed reduction in cell-to-cell adhesion affecting gap junction coupling (P < 0.001). The data provided suggest that this mutation might not have caused significant alterations in protein folding since there was no obstruction in protein trafficking or water permeation. Reduction in cell-to-cell adhesion and development of cataract suggest that the conserved positive charge of Extracellular Loop A may play an important role in bringing fiber cells closer. The proposed schematic models illustrate that cell-to-cell adhesion elicited by AQP0 is vital for lens transparency and homeostasis.


Assuntos
Aquaporinas/genética , Catarata/genética , Proteínas do Olho/genética , Cristalino/metabolismo , Mutação de Sentido Incorreto , RNA/genética , Animais , Aquaporinas/metabolismo , Catarata/metabolismo , Catarata/patologia , Adesão Celular/genética , Células Cultivadas , Análise Mutacional de DNA , Proteínas do Olho/metabolismo , Feminino , Humanos , Cristalino/patologia , Camundongos , Xenopus
19.
Biochem Biophys Res Commun ; 441(2): 333-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24148248

RESUMO

The scope of this investigation was to understand the role of aquaporin 5 (AQP5) for maintaining lens transparency and homeostasis. Studies were conducted using lenses of wild-type (WT) and AQP5 knockout (AQP5-KO) mice. Immunofluorescent staining verified AQP5 expression in WT lens sections and lack of expression in the knockout. In vivo and ex vivo, AQP5-KO lenses resembled WT lenses in morphology and transparency. Therefore, we subjected the lenses ex vivo under normal (5.6mM glucose) and hyperglycemic (55.6mM glucose) conditions to test for cataract formation. Twenty-four hours after incubation in hyperglycemic culture medium, AQP5-KO lenses showed mild opacification which was accelerated several fold at 48 h; in contrast, WT lenses remained clear even after 48 h of hyperglycemic treatment. AQP5-KO lenses displayed osmotic swelling due to increase in water content. Cellular contents began to leak into the culture medium after 48 h. We reason that water influx through glucose transporters and glucose cotransporters into the cells could mainly be responsible for creating hyperglycemic osmotic swelling; absence of AQP5 in fiber cells appears to cause lack of required water efflux, challenging cell volume regulation and adding to osmotic swelling. This study reveals that AQP5 could play a critical role in lens microcirculation for maintaining transparency and homeostasis, especially by providing protection under stressful conditions. To the best of our knowledge, this is the first report providing evidence that AQP5 facilitates maintenance of lens transparency and homeostasis by regulating osmotic swelling caused by glucose transporters and cotransporters under hyperglycemic stressful conditions.


Assuntos
Aquaporina 5/fisiologia , Catarata/etiologia , Catarata/genética , Hiperglicemia/complicações , Cristalino/metabolismo , Animais , Aquaporina 5/genética , Catarata/patologia , Glucose/farmacologia , Cristalino/efeitos dos fármacos , Cristalino/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão Osmótica
20.
Invest Ophthalmol Vis Sci ; 54(12): 7174-87, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24065810

RESUMO

PURPOSE: Age-related nuclear cataracts involve denaturation and aggregation of intracellular proteins. We have documented age-dependent changes in membrane transport in the mouse lens to see what might initiate changes in the intracellular milieu. METHODS: Microelectrode-based intracellular impedance studies of intact lenses were used to determine gap junction coupling conductance, fiber and surface cell membrane conductances, effective extracellular resistivity, and intracellular voltage. Fiber cell connexin expression was detected by Western blotting. Intracellular hydrostatic pressure was measured with a microelectrode/manometer system. Concentrations of intracellular sodium and calcium were measured by intracellular injection of sodium-binding benzofuran isophthalate and Fura2, respectively. RESULTS: In adult lenses, as age increased: fiber cell gap junction coupling conductance declined significantly, correlating with decreases in Cx46 and Cx50 labeling in Western blots; fiber and surface cell membrane conductances did not change systematically; effective extracellular resistivity increased monotonically; center to surface gradients for intracellular pressure, sodium, calcium, and voltage all increased, but in an interdependent manner that moderated changes. In newborn pup lenses, there were changes that did not simply fit with the above paradigm. CONCLUSIONS: In newborn pup lenses, the observed changes may relate to growth factors that are not related to age-dependent changes seen in adult lenses. The major change in adult lenses was an age-dependent decrease in gap junction coupling, probably due to oxidative damage leading to degradation of connexin proteins. These changes clearly lead to compromise of intracellular homeostasis and may be a causal factor in age-related nuclear cataracts.


Assuntos
Envelhecimento/psicologia , Cristalino/fisiologia , Animais , Transporte Biológico Ativo , Western Blotting , Cálcio/metabolismo , Membrana Celular/fisiologia , Conexinas/metabolismo , Impedância Elétrica , Junções Comunicantes/fisiologia , Pressão Hidrostática , Cristalino/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...