Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(3): 2170-2181, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36652711

RESUMO

Hybrid layered materials assembled from atomically thin crystals and small molecules bring great promises in pushing the current information and quantum technologies beyond the frontiers. We demonstrate here a class of layered valley-spin hybrid (VSH) materials composed of a monolayer two-dimensional (2D) semiconductor and double-decker single molecule magnets (SMMs). We have materialized a VSH prototype by thermal evaporation of terbium bis-phthalocyanine onto a MoS2 monolayer and revealed its composition and stability by both microscopic and spectroscopic probes. The interaction of the VSH components gives rise to the intersystem crossing of the photogenerated carriers and moderate p-doping of the MoS2 monolayer, as corroborated by the density functional theory calculations. We further explored the valley contrast by helicity-resolved photoluminescence (PL) microspectroscopy carried out down to liquid helium temperatures and in the presence of the external magnetic field. The most striking feature of the VSH is the enhanced A exciton-related valley emission observed at the out-of-resonance condition at room temperature, which we elucidated by the proposed nonradiative energy drain transfer mechanism. Our study thus demonstrates the experimental feasibility and great promises of the ultrathin VSH materials with chiral light emission, operable by physical fields for emerging opto-spintronic, valleytronic, and quantum information concepts.

2.
ACS Appl Mater Interfaces ; 12(50): 56568-56578, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33283514

RESUMO

Interface-driven multifunctional facets are gearing up in the field of science and technology. Here, we present the interface-activated resistive switching (RS), negative differential resistance, diode behavior, and ultraviolet (UV) light sensing in nanosheet-based hybrid devices. A hybrid device i.e., titanium dioxide nanosheet (TiO2-NS)/poly(dimercaptothiadiazole-triazine)[Poly(DMcT-CC)] is fabricated by spin coating Poly(DMcT-CC) polymer on hydrothermally as-grown TiO2-NS. The pristine devices of both materials show either small or no magnitude of RS, but the hybrid device shows highly enhanced RS of nearly four orders due to the formation of a p-n junction at the NS/polymer interface. The resistive random access memory feature appears to be more prominent in the hybrid device i.e., high and low current states are found to be stable in repetitive cycles since the interface acts as a trapping center for the carriers. The UV sensing ability of the hybrid device has been demonstrated by a threefold increment in a current at 60 mV. The impedance spectroscopy has been employed to show that the multifunctional features are directly associated to the NS/polymer interface, which deduce that the manipulation of such interfaces can pave the way for developing the hybrid structures.

3.
Adv Mater ; 30(21): e1706423, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29611223

RESUMO

It is shown that "spontaneous magnetization" occurs when chiral oligopeptides are attached to ferrocene and are self-assembled on a gold substrate. As a result, the electron transfer, measured by electrochemistry, shows asymmetry in the reduction and oxidation rate constants; this asymmetry is reversed between the two enantiomers. The results can be explained by the chiral induced spin selectivity of the electron transfer. The measured magnetization shows high anisotropy and the "easy axis" of magnetization is along the molecular axis.


Assuntos
Oligopeptídeos/química , Eletroquímica , Transporte de Elétrons , Ouro , Oxirredução
4.
Phys Chem Chem Phys ; 20(2): 1091-1097, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29238765

RESUMO

We discuss spin injection and spin valves, which are based on organic and biomolecules, that offer the possibility to overcome some of the limitations of solid-state devices, which are based on ferromagnetic metal electrodes. In particular, we discuss spin filtering through bacteriorhodopsin in a solid state biomolecular spin valve that is based on the chirality induced spin selectivity (CISS) effect and shows a magnetoresistance of ∼2% at room temperature. The device is fabricated using a layer of bacteriorhodopsin (treated with n-octyl-thioglucoside detergent: OTG-bR) that is adsorbed on a cysteamine functionalized gold electrode and capped with a magnesium oxide layer as a tunneling barrier, upon which a Ni top electrode film is placed and used as a spin analyzer. The bR based spin valves show an antisymmetric magnetoresistance response when a magnetic field is applied along the direction of the current flow, whereas they display a positive symmetric magnetoresistance curve when a magnetic field is applied perpendicular to the current direction.


Assuntos
Bacteriorodopsinas/química , Imãs , Eletrodos , Elétrons , Ouro , Campos Magnéticos , Tioglucosídeos
5.
J Phys Condens Matter ; 29(10): 103002, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28145273

RESUMO

We review a recently discovered phenomenon, the chiral induced spin selectivity (CISS) effect, that can enable a new technology for the injection of spin polarized current without the need for a permanent magnetic layer. The effect occurs in chiral molecules and systems without parity symmetry, i.e. systems that do not have inversion symmetry. The theoretical foundations for the effect are presented first and then followed by several examples of spin-valves that are based on chiral systems. The CISS-based spin valves introduce the possibility to inject spin current without the use of a permanent magnet and to achieve relatively large magnetoresistance at room temperature.

6.
Nano Lett ; 16(7): 4583-9, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27336320

RESUMO

This work demonstrates that chiral imprinted CdSe quantum dots (QDs) can act as spin selective filters for charge transport. The spin filtering properties of chiral nanoparticles were investigated by magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements and magnetoresistance measurements. The mCP-AFM measurements show that the chirality of the quantum dots and the magnetic orientation of the tip affect the current-voltage curves. Similarly, magnetoresistance measurements demonstrate that the electrical transport through films of chiral quantum dots correlates with the chiroptical properties of the QD. The spin filtering properties of chiral quantum dots may prove useful in future applications, for example, photovoltaics, spintronics, and other spin-driven devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...