Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 219(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36178457

RESUMO

Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells.


Assuntos
Antineoplásicos , Neoplasias , Fatores de Transcrição de Zíper de Leucina Básica/genética , Humanos , Imunidade Inata , Células Matadoras Naturais
2.
Vaccines (Basel) ; 10(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632522

RESUMO

Background: Τhe study aims to identify factors associated with COVID-19 vaccine acceptance and to investigate knowledge and perceptions of Primary Health Care Centers (PHCC) personnel, who acted as pioneers in the national COVID-19 vaccination strategy. Methods and Materials: A nationwide cross-sectional survey was conducted by distributing an online anonymous questionnaire comprising 25 questions during the first semester of 2021. Results: Approximately 85.3% of the 1136 respondents (response rate 28.4%) were vaccinated or intended to be. The acceptance of seasonal flu vaccine (aOR: 3.29, 95%CI: 2.08−5.20), correct COVID-19 vaccine knowledge (aOR: 8.37, 95%CI: 4.81−14.59) and lack of concern regarding vaccine novelty (aOR: 6.18, 95%CI: 3.91−9.77) were positively correlated with vaccine acceptance. Vaccinated respondents were more likely to be physicians (aOR: 2.29, 95%CI: 1.03−5.09) or administrative staff (aOR: 2.65, 95%CI: 1.18−5.97) compared to nursing stuff. Reasons for vaccine hesitancy included inadequate information (37.8%) and vaccine safety (31.9%). Vaccine acceptance was strongly correlated (Spearman's correlation coefficient r = 0.991, p < 0.001) between PHCC personnel and the general population of each health district. Conclusions: COVID-19 vaccine acceptance among PHCC personnel in Greece was comparably high, but specific groups (nurses) were hesitant. As the survey's target population could serve as a role model for the community, efforts should be made to improve COVID-19 vaccine acceptance.

3.
J Leukoc Biol ; 112(4): 641-657, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35258130

RESUMO

Thymocyte differentiation and lineage commitment is regulated by an extensive network of transcription factors and signaling molecules among which Erk plays a central role. However, Erk effectors as well as the molecular mechanisms underlying this network are not well understood. Erf is a ubiquitously expressed transcriptional repressor regulated by Erk-dependent phosphorylation. Here, we investigated the role of Erf in T cell maturation and lineage commitment, using a double-fluorescent Erf-floxed mouse to produce thymus-specific Erf knockouts. We observed significant accumulation of thymocytes in the CD4/CD8 DP stage, followed by a significant reduction in CD4SP cells, a trend for lower CD8SP cell frequency, and an elevated percentage of γδ expressing thymocytes in Erf-deficient mice. Also, an elevated number of CD69+ TCRß+ cells indicates that thymocytes undergoing positive selection accumulate at this stage. The expression of transcription factors Gata3, ThPOK, and Socs1 that promote CD4+ cell commitment was significantly decreased in Erf-deficient mice. These findings suggest that Erf is involved in T cell maturation, acting as a positive regulator during CD4 and eventually CD8 lineage commitment, while negatively regulates the production of γδ T cells. In addition, Erf-deficient mice displayed decreased percentages of CD4+ and CD8+ splenocytes and elevated levels of IL-4 indicating that Erf may have an additional role in the homeostasis, differentiation, and immunologic response of helper and cytotoxic T cells in the periphery. Overall, our results show, for the first time, Erf's involvement in T cell biology suggesting that Erf acts as a potential regulator during thymocyte maturation and thymocyte lineage commitment, in γδ T cell generation, as well as in Th cell differentiation.


Assuntos
Interleucina-4 , Timócitos , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Diferenciação Celular , Linhagem da Célula , Fator de Transcrição GATA3/metabolismo , Interleucina-4/metabolismo , Camundongos , Proteínas Repressoras , Timo
4.
Sci Rep ; 10(1): 18902, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144667

RESUMO

Whereas effector CD4+ and CD8+ T cells promote immune activation and can drive clearance of infections and cancer, CD4+ regulatory T (Treg) cells suppress their function, contributing to both immune homeostasis and cancer immunosuppression. The transcription factor BACH2 functions as a pervasive regulator of T cell differentiation, promoting development of CD4+ Treg cells and suppressing the effector functions of multiple effector T cell (Teff) lineages. Here, we report the development of a stable cell-based bioluminescence assay of the transcription factor activity of BACH2. Tetracycline-inducible BACH2 expression resulted in suppression of phorbol 12-myristate 13-acetate (PMA)/ionomycin-driven activation of a luciferase reporter containing BACH2/AP-1 target sequences from the mouse Ifng + 18k enhancer. BACH2 expression repressed the luciferase signal in a dose-dependent manner but this activity was abolished at high levels of AP-1 signalling, suggesting contextual regulation of AP-1 driven gene expression by BACH2. Finally, using the reporter assay developed, we find that the histone deacetylase 3 (HDAC3)-selective inhibitor, RGFP966, inhibits BACH2-mediated repression of signal-driven luciferase expression. In addition to enabling mechanistic studies, this cell-based reporter may enable identification of small molecule agonists or antagonists of BACH2 function for drug development.


Assuntos
Acrilamidas/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Medições Luminescentes/métodos , Fenilenodiaminas/farmacologia , Acetato de Tetradecanoilforbol/análogos & derivados , Fator de Transcrição AP-1/genética , Animais , Diferenciação Celular , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Luciferases/genética , Luciferases/metabolismo , Camundongos , Tetraciclina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
5.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32515782

RESUMO

Regulatory T (Treg) cell populations are composed of functionally quiescent resting Treg (rTreg) cells which differentiate into activated Treg (aTreg) cells upon antigen stimulation. How rTreg cells remain quiescent despite chronic exposure to cognate self- and foreign antigens is unclear. The transcription factor BACH2 is critical for early Treg lineage specification, but its function following lineage commitment is unresolved. Here, we show that BACH2 is repurposed following Treg lineage commitment and promotes the quiescence and long-term maintenance of rTreg cells. Bach2 is highly expressed in rTreg cells but is down-regulated in aTreg cells and during inflammation. In rTreg cells, BACH2 binds to enhancers of genes involved in aTreg differentiation and represses their TCR-driven induction by competing with AP-1 factors for DNA binding. This function promotes rTreg cell quiescence and long-term maintenance and is required for immune homeostasis and durable immunosuppression in cancer. Thus, BACH2 supports a "division of labor" between quiescent rTreg cells and their activated progeny in Treg maintenance and function, respectively.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ciclo Celular , Homeostase , Terapia de Imunossupressão , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Reguladores/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Linhagem da Célula , Citocinas/metabolismo , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/genética , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/citologia , Fator de Transcrição AP-1/metabolismo
6.
Nature ; 583(7816): 447-452, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499651

RESUMO

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Assuntos
Cromossomos Humanos Par 11/genética , Colite/genética , Colite/imunologia , Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença/genética , Linfócitos T Reguladores/imunologia , Acetilação , Alelos , Animais , Cromossomos de Mamíferos/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...