Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 25(9): 1522-1530, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28583899

RESUMO

OBJECTIVE: Statins are widely used drugs for cholesterol lowering, which were recently found to counteract the effects of aberrant fibroblast growth factor receptor (FGFR3) signaling in cell and animal models of FGFR3-related chondrodysplasia. This opened an intriguing therapeutic possibility for human dwarfing conditions caused by gain-of-function mutations in FGFR3, although the mechanism of statin action on FGFR3 remains unclear. Here, we determine the effect of statins on FGFR signaling in chondrocytes. DESIGN: Cultured chondrocyte cell lines, mouse embryonic tibia cultures and limb bud micromasses were treated with FGF2 to activate FGFR signaling. The effects of atorvastatin, fluvastatin, lovastatin and pravastatin on FGFR3 protein stability and on FGFR-mediated chondrocyte growth-arrest, loss of extracellular matrix (ECM), induction of premature senescence and hypertrophic differentiation were evaluated. RESULTS: Statins did not alter the level of FGFR3 protein expression nor produce any effect on FGFR-mediated inhibition of chondrocyte proliferation and hypertrophic differentiation in cultured chondrocyte cell lines, mouse tibia cultures or limb bud micromasses. CONCLUSION: We conclude that statins do not inhibit the FGFR signaling in chondrocytes. Therefore the statin-mediated rescue of FGFR3-related chondrodysplasia, described before, is likely not intrinsic to the growth plate cartilage.


Assuntos
Condrócitos/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Humanos , Botões de Extremidades/efeitos dos fármacos , Botões de Extremidades/metabolismo , Camundongos , Ratos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Tíbia/embriologia , Tíbia/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos
2.
J Biol Chem ; 276(34): 31897-905, 2001 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-11468281

RESUMO

The mechanism of fatty acid-dependent uncoupling by mitochondrial uncoupling proteins (UCP) is still in debate. We have hypothesized that the anionic fatty acid head group is translocated by UCP, and the proton is transported electroneutrally in the bilayer by flip-flop of the protonated fatty acid. Alkylsulfonates are useful as probes of the UCP transport mechanism. They are analogues of fatty acids, and they are transported by UCP1, UCP2, and UCP3. We show that undecanesulfonate and laurate are mutually competitive inhibitors, supporting the hypothesis that fatty acid anion is transported by UCP1. Alkylsulfonates cannot be protonated because of their low pK(a), consequently, they cannot catalyze electroneutral proton transport in the bilayer and cannot support uncoupling by UCP. We report for the first time that propranolol forms permeant ion pairs with the alkylsulfonates, thereby removing this restriction. Because a proton is transported with the neutral ion pair, the sulfonate is able to deliver protons across the bilayer, behaving as if it were a fatty acid. When ion pair transport is combined with UCP1, we now observe electrophoretic proton transport and uncoupling of brown adipose tissue mitochondria. These experiments confirm that the proton transport of UCP-mediated uncoupling takes place in the lipid bilayer and not via UCP itself. Thus, UCP1, like other members of its gene family, translocates anions and does not translocate protons.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Sondas Moleculares , Ácidos Sulfônicos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/ultraestrutura , Alquilação , Animais , Cricetinae , Ácidos Graxos/metabolismo , Guanosina Difosfato/metabolismo , Canais Iônicos , Mesocricetus , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Transporte Proteico , Prótons , Espectrometria de Fluorescência , Proteína Desacopladora 1
3.
Biochim Biophys Acta ; 1459(2-3): 383-9, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-11004454

RESUMO

According to the proton buffering model, introduced by Klingenberg, UCP1 conducts protons through a hydrophilic pathway lined with fatty acid head groups that buffer the protons as they move across the membrane. According to the fatty acid protonophore model, introduced by Garlid, UCPs do not conduct protons at all. Rather, like all members of this gene family, they are anion carriers. A variety of anions are transported, but the physiological substrates are fatty acid (FA) anions. Because the carboxylate head group is translocated by UCP, and because the protonated FA rapidly diffuses across the membrane, this mechanism permits FA to behave as regulated cycling protonophores. Favoring the latter mechanism is the fact that the head group of long-chain alkylsulfonates, strong acid analogues of FA, is also translocated by UCP.


Assuntos
Proteínas de Transporte/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Desacopladores/metabolismo , Animais , Proteínas de Transporte de Ânions , Ânions , Transporte Biológico , Soluções Tampão , Proteínas de Transporte/química , Proteínas de Transporte/genética , Ácidos Graxos/metabolismo , Humanos , Canais Iônicos , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Químicos , Proteínas/metabolismo , Prótons , Proteína Desacopladora 1 , Proteína Desacopladora 2 , Proteína Desacopladora 3
4.
J Biol Chem ; 274(37): 26003-7, 1999 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-10473545

RESUMO

Uncoupling protein 1 (UCP1) dissipates energy and generates heat by catalyzing back-flux of protons into the mitochondrial matrix, probably by a fatty acid cycling mechanism. If the newly discovered UCP2 and UCP3 function similarly, they will enhance peripheral energy expenditure and are potential molecular targets for the treatment of obesity. We expressed UCP2 and UCP3 in Escherichia coli and reconstituted the detergent-extracted proteins into liposomes. Ion flux studies show that purified UCP2 and UCP3 behave identically to UCP1. They catalyze electrophoretic flux of protons and alkylsulfonates, and proton flux exhibits an obligatory requirement for fatty acids. Proton flux is inhibited by purine nucleotides but with much lower affinity than observed with UCP1. These findings are consistent with the hypothesis that UCP2 and UCP3 behave as uncoupling proteins in the cell.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Proteínas/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Ácidos Graxos/farmacologia , Humanos , Canais Iônicos , Cinética , Ácidos Láuricos/farmacologia , Proteínas/antagonistas & inibidores , Nucleotídeos de Purina/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Espectrometria de Fluorescência , Proteína Desacopladora 2 , Proteína Desacopladora 3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...