Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 241: 107742, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572512

RESUMO

Neuroblastoma is a complex and aggressive type of cancer that affects children. Current treatments involve a combination of surgery, chemotherapy, radiotherapy, and stem cell transplantation. However, treatment outcomes vary due to the heterogeneous nature of the disease. Computational models have been used to analyse data, simulate biological processes, and predict disease progression and treatment outcomes. While continuum cancer models capture the overall behaviour of tumours, and agent-based models represent the complex behaviour of individual cells, multiscale models represent interactions at different organisational levels, providing a more comprehensive understanding of the system. In 2018, the PRIMAGE consortium was formed to build a cloud-based decision support system for neuroblastoma, including a multi-scale model for patient-specific simulations of disease progression. In this work we have developed this multi-scale model that includes data such as patient's tumour geometry, cellularity, vascularization, genetics and type of chemotherapy treatment, and integrated it into an online platform that runs the simulations on a high-performance computation cluster using Onedata and Kubernetes technologies. This infrastructure will allow clinicians to optimise treatment regimens and reduce the number of costly and time-consuming clinical trials. This manuscript outlines the challenging framework's model architecture, data workflow, hypothesis, and resources employed in its development.


Assuntos
Neuroblastoma , Criança , Humanos , Neuroblastoma/terapia , Neovascularização Patológica , Progressão da Doença
2.
Biotechnol Bioeng ; 26(7): 654-7, 1984 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18553426

RESUMO

Continuous cooker prototypes of very simple design, using electricity as a primary energy source, were developed for the process of cooking and liquefaction of starch suspensions. Previous work on equipment using microwave dielectric heating has already been reported. Results of energy consumption as low as 330 kcal/kg based on starch content were achieved. Considering these results and looking for new solutions or engineering concepts, the authors have been investigating the possibility of using electric energy at 60 Hz for direct resistive heating, in which the starch suspension is the proper "resistor."The most important results of energetic yield obtained until now, working in a continuous process of cooking-liquefaction, are not larger than 235 kcal (272 Wh)/kg based on starch content. These results were obtained using a commercial grade alpha-amylase from B. subtillis, working with temperatures ranging from 70 to 75 degrees C, and with residence times in the reactor not greater than 1.5 min. The experiments of saccharification and fermentation accomplished as a test for the efficiency of this heating technique gave good results (as with a conventional technique) and thus enabled us to proceed with the studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...