Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542266

RESUMO

Numerous studies have indicated a link between vaccines and the exacerbation of autoimmune diseases including rheumatoid arthritis (RA). However, there is no consensus in clinical practice regarding the optimal timing of immunization. Therefore, this study aimed to investigate the impact of the 3Fluart influenza vaccine on the complete Freund's adjuvant (CFA)-induced chronic arthritis rat model and to identify new biomarkers with clinical utility. CFA was injected into the plantar surface of one hind paw and the root of the tail on day 0, and the tail root injection was repeated on day 1. Flu vaccination was performed on day 1 or 7. Paw volume was measured by plethysmometry, mechanonociceptive threshold by dynamic plantar aesthesiometry, neutrophil myeloperoxidase (MPO) activity, and vascular leakage using in vivo optical imaging throughout the 21-day experiment. Inflammatory markers were determined by Western blot and histopathology. CFA-induced swelling, an increase in MPO activity, plasma extravasation in the tibiotarsal joint. Mechanical hyperalgesia of the hind paw was observed 3 days after the injection, which gradually decreased. Co-administration of the flu vaccine on day 7 but not on day 1 resulted in significantly increased heme oxygenase 1 (HO-1) expression. The influenza vaccination appears to have a limited impact on the progression and severity of the inflammatory response and associated pain. Nevertheless, delayed vaccination could alter the disease activity, as indicated by the findings from assessments of edema and inflammatory biomarkers. HO-1 may serve as a potential marker for the severity of inflammation, particularly in the case of delayed vaccination. However, further investigation is needed to fully understand the regulation and role of HO-1, a task that falls outside the scope of the current study.


Assuntos
Artrite Experimental , Influenza Humana , Ratos , Animais , Humanos , Artrite Experimental/metabolismo , Adjuvante de Freund/efeitos adversos , Hiperalgesia/metabolismo , Inflamação , Vacinação , Progressão da Doença
2.
Biomedicines ; 12(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540250

RESUMO

Retinal vascular diseases and consequential metabolic disturbances in the eye are major concerns for healthcare systems all around the world. BGP-15, a drug candidate small-molecule [O-(3-piperidino-2-hydroxy-1-propyl) nicotinic amidoxime dihydrochloride], has been formerly demonstrated by our workgroup to be retinoprotective both in the short and long term. Based on these results, the present study was performed to investigate the efficacy of BGP in an eyedrop formulation containing sulfobutylether-ß-cyclodextrin (SBECD), which is a solubility enhancer as well. Electroretinographical evaluations were carried out and BGP was demonstrated to improve both scotopic and photopic retinal a- and b-waves, shorten their implicit times and restore oscillatory potentials after ischemia-reperfusion. It was also observed to counteract retinal thinning after ischemia-reperfusion in the eyes of Sprague Dawley rats. This small-molecule drug candidate is able to compensate for experimental global eye ischemia-reperfusion injury elicited by ligation of blood vessels in rats. We successfully demonstrated that BGP is able to exert its protective effects on the retina even if administered in the form of eyedrops.

3.
J Med Chem ; 67(5): 3643-3667, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393759

RESUMO

Steroid-based histamine H3 receptor antagonists (d-homoazasteroids) were designed by combining distinct structural elements of HTS hit molecules. They were characterized, and several of them displayed remarkably high affinity for H3 receptors with antagonist/inverse agonist features. Especially, the 17a-aza-d-homolactam chemotype demonstrated excellent H3R activity together with significant in vivo H3 antagonism. Optimization of the chemotype was initiated with special emphasis on the elimination of the hERG and muscarinic affinity. Additionally, ligand-based SAR considerations and molecular docking studies were performed to predict binding modes of the molecules. The most promising compounds (XXI, XXVIII, and XX) showed practically no muscarinic and hERG affinity. They showed antagonist/inverse agonist property in the in vitro functional tests that was apparent in the rat in vivo dipsogenia test. They were considerably stable in human and rat liver microsomes and provided significant in vivo potency in the place recognition and novel object recognition cognitive paradigms.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Ratos , Humanos , Animais , Histamina , Agonismo Inverso de Drogas , Receptores Histamínicos H3/metabolismo , Simulação de Acoplamento Molecular , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/metabolismo , Esteroides , Microssomos Hepáticos/metabolismo , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos
4.
Nat Commun ; 14(1): 8064, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052802

RESUMO

Despite the increasing number of GPCR structures and recent advances in peptide design, the development of efficient technologies allowing rational design of high-affinity peptide ligands for single GPCRs remains an unmet challenge. Here, we develop a computational approach for designing conjugates of lariat-shaped macrocyclized peptides and a small molecule opioid ligand. We demonstrate its feasibility by discovering chemical scaffolds for the kappa-opioid receptor (KOR) with desired pharmacological activities. The designed De Novo Cyclic Peptide (DNCP)-ß-naloxamine (NalA) exhibit in vitro potent mixed KOR agonism/mu-opioid receptor (MOR) antagonism, nanomolar binding affinity, selectivity, and efficacy bias at KOR. Proof-of-concept in vivo efficacy studies demonstrate that DNCP-ß-NalA(1) induces a potent KOR-mediated antinociception in male mice. The high-resolution cryo-EM structure (2.6 Å) of the DNCP-ß-NalA-KOR-Gi1 complex and molecular dynamics simulations are harnessed to validate the computational design model. This reveals a network of residues in ECL2/3 and TM6/7 controlling the intrinsic efficacy of KOR. In general, our computational de novo platform overcomes extensive lead optimization encountered in ultra-large library docking and virtual small molecule screening campaigns and offers innovation for GPCR ligand discovery. This may drive the development of next-generation therapeutics for medical applications such as pain conditions.


Assuntos
Analgésicos Opioides , Receptores Opioides kappa , Masculino , Camundongos , Animais , Receptores Opioides kappa/metabolismo , Ligantes , Analgésicos Opioides/química , Receptores Opioides mu/metabolismo , Peptídeos Cíclicos/química
5.
Nature ; 623(7986): 397-405, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914940

RESUMO

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Assuntos
Encéfalo , Colesterol , Células-Tronco Pluripotentes Induzidas , Microglia , Células-Tronco Neurais , Neurogênese , Organoides , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Microglia/metabolismo , Organoides/citologia , Organoides/metabolismo , Colesterol/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Axônios , Proliferação de Células , Ésteres/metabolismo , Gotículas Lipídicas/metabolismo
6.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686067

RESUMO

This study evaluates the potential therapeutic effects of anthocyanin-rich Prunus cerasus (sour cherry) extract (PCE) on atherosclerosis-associated cardiac dysfunction, described by the impairment of the NO-PKG (nitric oxide-protein kinase G) pathway and the antioxidant capacity. Initially, a rabbit model of atherosclerotic cardiovascular disease was established by administering a cholesterol-rich diet, enabling the examination of the impact of 9 g/kg PCE on the pre-existing compromised cardiovascular condition. After that, the animals were divided into four groups for 12 weeks: the (1) untreated control group; (2) PCE-administered healthy rabbits; (3) hypercholesterolemic (HC) group kept on an atherogenic diet; and (4) PCE-treated HC group. Dyslipidemia, impaired endothelial function, and signs of diastolic dysfunction were evident in hypercholesterolemic rabbits, accompanied by a reduced cardiac expression of eNOS (endothelial nitric oxide synthase), PKG, and SERCA2a (sarco/endoplasmic reticulum calcium ATPase 2a). Subsequent PCE treatment improved the lipid profile and the cardiac function. Additionally, PCE administration was associated with elevated myocardial levels of eNOS, PKG, and SERCA2a, while no significant changes in the vascular status were observed. Western blot analysis further revealed hypercholesterolemia-induced increase and PCE-associated reduction in heme oxygenase-1 expression. The observed effects of anthocyanins indicate their potential as a valuable addition to the treatment regimen for atherosclerosis-associated cardiac dysfunction.


Assuntos
Aterosclerose , Cardiopatias , Lagomorpha , Prunus avium , Animais , Coelhos , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Aterosclerose/complicações , Aterosclerose/tratamento farmacológico
7.
Cell Rep Med ; 4(9): 101175, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37652017

RESUMO

Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-ß plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.


Assuntos
Doença de Alzheimer , Microglia , Animais , Humanos , Camundongos , Astrócitos , Ingestão de Alimentos , Sinapses
8.
Perioper Med (Lond) ; 12(1): 30, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370150

RESUMO

BACKGROUND: Intraoperative hypotension is a risk factor for postoperative complications. Preoperative dehydration is a major contributor, although it is difficult to estimate its severity. Point-of-care ultrasound offers several potential methods, including measurements of the inferior vena cava. The addition of lung ultrasound may offer a safety limit. We aimed to evaluate whether the implication of an ultrasound-based preoperative fluid therapy protocol can decrease the incidence of early intraoperative hypotension. METHODS: Randomised controlled study in a tertiary university department involves elective surgical patients of ASA 2-3 class, scheduled for elective major abdominal surgery under general anaesthesia with intubation. We randomised 40-40 patients; 38-38 were available for analysis. Conventional fluid therapy was ordered on routine preoperative visits. Ultrasound-based protocol evaluated the collapsibility index of inferior vena cava and lung ultrasound profiles. Scans were performed twice: 2 h and 30 min before surgery. A high collapsibility index (≥ 40%) indicated a standardised fluid bolus, while the anterior B-profile of the lung ultrasound contraindicated further fluid. The primary outcome was the incidence of postinduction and early intraoperative (0-10 min) hypotension (MAP < 65 mmHg and/or ≥ 30% of decrease from baseline). Secondary endpoints were postoperative lactate level, urine output and lung ultrasound score at 24 h. RESULTS: The absolute criterion of postinduction hypotension was fulfilled in 12 patients in the conventional group (31.6%) and 3 in the ultrasound-based group (7.9%) (p = 0.0246). Based on composite criteria of absolute and/or relative hypotension, we observed 17 (44.7%) and 7 (18.4%) cases, respectively (p = 0.0136). The incidence of early intraoperative hypotension was also lower: HR for absolute hypotension was 2.10 (95% CI 1.00-4.42) in the conventional group (p = 0.0387). Secondary outcome measures were similar in the study groups. CONCLUSION: We implemented a safe and effective point-of-care ultrasound-based preoperative fluid replacement protocol into perioperative care. TRIAL REGISTRATION: The study was registered to ClinicalTrials.gov on 10/12/2021, registration number: NCT05171608 (registered prospectively on 10/12/2021).

9.
ACS Omega ; 8(13): 12565-12572, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033828

RESUMO

Protonation of cyclopropanes and aziridines is well-studied, but reactions of phosphiranes with acids are rare and have not been reported to result in ring opening. Treatment of syn-Mes*PCH2CHR (Mes* = 2,4,6-(t-Bu)3C6H2, R = Me or Ph, syn-1-2) or anti-Mes*PCH2CHPh (anti-2) with triflic acid resulted in regiospecific anti-Markovnikov C-protonation with ring opening and cyclophosphination of a Mes* ortho-t-Bu group to yield the phospholanium cations [PH(CH2CH2R)(4,6-(t-Bu)2-2-CMe2CH2C6H2)][OTf] (R = Me or Ph, 3-4), which were deprotonated with NEt3 to give phospholanes 5-6. Enantioenriched or racemic syn-1 both gave racemic 3. The byproduct [Mes*PH(CH2CH2Me)(OH)][OTf] (7) was formed from syn-1 and HOTf in the presence of water. Density functional theory calculations suggested that P-protonation followed by ring opening and hydride migration to C yields the phosphenium ion, [Mes*P(CH2CH2Me)][OTf], which undergoes C-H oxidative addition of an o-t-Bu methyl group. This work established a new reactivity pattern for phosphiranes.

10.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36986459

RESUMO

Multi-target drug candidate BGP-15 has shown cardioprotective and antiarrhythmic actions in diseased models. Here, we investigated the effects of BGP-15 on ECG and echocardiographic parameters, heart rate variability (HRV), and arrhythmia incidence in telemetry-implanted rats, under beta-adrenergic stimulation by isoproterenol (ISO). In total, 40 rats were implanted with radiotelemetry transmitters. First, dose escalation studies (40-160 mg/kg BGP-15), ECG parameters, and 24 h HRV parameters were assessed. After, rats were divided into Control, Control+BGP-15, ISO, and ISO+BGP-15 subgroups for 2 weeks. ECG recordings were obtained from conscious rats, arrhythmias and HRV parameters were assessed, and echocardiography was carried out. ISO-BGP-15 interaction was also evaluated on an isolated canine cardiomyocyte model. BGP-15 had no observable effects on the ECG waveforms; however, it decreased heart rate. HRV monitoring showed that BGP-15 increased RMSSD, SD1, and HF% parameters. BGP-15 failed to counteract 1 mg/kg ISO-induced tachycardia, but diminished the ECG of ischemia and suppressed ventricular arrhythmia incidence. Under echocardiography, after low-dose ISO injection, BGP-15 administration lowered HR and atrial velocities, and increased end-diastolic volume and ventricle relaxation, but did not counteract the positive inotropic effects of ISO. Two weeks of BGP-15 treatment also improved diastolic function in ISO-treated rats. In isolated cardiomyocytes, BGP-15 prevented 100 nM ISO-induced aftercontractions. Here, we show that BGP-15 increases vagally mediated HRV, reduces arrhythmogenesis, enhances left ventricle relaxation, and suppresses the aftercontractions of cardiomyocytes. As the drug is well tolerated, it may have a clinical value in preventing fatal arrhythmias.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36674026

RESUMO

The COVID-19 pandemic has posed a huge challenge to the world in recent years. The development of vaccines that are as effective as possible and accessible to society offers a promising alternative for addressing the problems caused by this situation as soon as possible and to restore the pre-epidemic system. The present study investigated the preferences of residents in Hungary's second-largest city (Debrecen) for the COVID-19 vaccine. To achieve this aim, a discrete choice experiment was conducted with 1011 participants, and the vaccine characteristics included in the design of the experiment were determined by qualitative methods and a pilot survey: (1) country of origin; (2) efficiency; (3) side effect; and (4) duration of protection. During the data collection at three vaccination sites, respondents were asked to choose between three vaccine alternatives and one "no choice" option in eight decision situations. Discrete choice model estimations were performed using a random parameter logit (RPL) specification with the final model extended to include a latent variable measuring pandemic awareness. The results showed that the vaccine with a Chinese country of origin is the least preferred among the respondents, while the Hungarian and the European vaccines are the most preferred. Furthermore, the increase in the vaccine efficiency level increased the respondents' sense of utility for the vaccine; the short-term side effect was preferred to the long-term one; and the increase in the duration of protection provided by the vaccine increased the respondents' sense of utility for the vaccine. Based on the parameter estimated for the latent variable, it can be concluded that as the level of pandemic awareness (which is more positive among people with chronic diseases and less important among health workers) increases, the choice of a vaccine option becomes more preferred among respondents compared to the "no choice". The results of our investigation could contribute towards increasing compliance in the case of the vaccination-rejecting population, not only for COVID-19, but for any kind of vaccination procedure.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19/uso terapêutico , Pandemias/prevenção & controle , Hungria , Comportamento de Escolha , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação
12.
Nature ; 613(7945): 767-774, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450356

RESUMO

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.


Assuntos
Desenho de Fármacos , Fentanila , Morfinanos , Receptores Opioides mu , Animais , Camundongos , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Arrestinas/metabolismo , Microscopia Crioeletrônica , Fentanila/análogos & derivados , Fentanila/química , Fentanila/metabolismo , Ligantes , Morfinanos/química , Morfinanos/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Receptores Opioides mu/ultraestrutura , Sítios de Ligação , Nociceptividade
13.
Br J Pharmacol ; 180(7): 975-993, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34826881

RESUMO

Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the µ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the µ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Insuficiência Respiratória , Humanos , Analgésicos Opioides/efeitos adversos , Receptores Opioides mu , Dor/tratamento farmacológico , Dor/induzido quimicamente , Insuficiência Respiratória/induzido quimicamente
14.
Curr Res Food Sci ; 5: 2146-2161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387597

RESUMO

Pure oats in gluten-free diets (GFD) represent important nutritional benefits for people suffering from celiac disease (CD). However, oat cultivars do not contain the typical CD-related wheat gliadin analog polypeptides. Emerging evidence suggests that oat cultivars containing gluten-like epitopes in avenin sequences may pose potential health risks for celiac patients in rare cases, depending on the individual's susceptibility. Consequently, it is necessary to screen oats in terms of protein and epitope composition, to be able to select safe varieties for gluten-free applications. The overall aim of our study is to investigate the variation of oat protein composition directly related to health-related and techno-functional properties and to examine how the protein compositional parameters change due to irrigation during the grain-filling period as compared to the natural rain-fed grown, in a large winter oat population of different geographic origin. Elements of an oat sample population representing 164 winter oat varieties from 8 countries and the protein composition of resulting samples have been characterized. Size distribution of the total protein extracts has been analyzed by SE-HPLC, while the 70% ethanol extracted proteins were analyzed by RP-HPLC. Protein extracts are separated into 3 main groups of fractions on the SE-HPLC column; polymeric, avenin, and non-avenin monomeric protein groups, representing 59.17-80.87%, 12.89-31.03%, and 3.40-9.41% of total protein content, respectively. The ratio of polymeric to monomeric proteins varied between 1.71 and 6.07. 91 RP-HPLC-separated peaks have been differentiated from the ethanol extractable proteins of the entire population. The various parameters identified a lot of variation, confirming the significance of genotypic variation. In addition, it was also established that the additional water supply during grain filling significantly affected the various quantitative parameters of protein content, but not its qualitative structure. This environmental effect, however, was strongly genotype-dependent. Winter oat genotypes with low levels of epitope content were identified and it was proven that these characteristics were independent of the environmental factor of water availability. These genotypes are appropriate for initiating a specific breeding program to yield oat cultivars suitable for CD patients.

16.
Front Cell Dev Biol ; 10: 968341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247014

RESUMO

Focalised hypoxia is widely prevalent in diseases such as stroke, cardiac arrest, and dementia. While in some cases hypoxia improves cellular functions, it mostly induces or exacerbates pathological changes. The lack of methodologies that can simulate focal acute hypoxia, in either animal or cell culture, impedes our understanding of the cellular consequences of hypoxia. To address this gap, an electrochemical localised oxygen scavenging system (eLOS), is reported, providing an innovative platform for spatiotemporal in vitro hypoxia modulation. The electrochemical system is modelled showing O2 flux patterns and localised O2 scavenging and hypoxia regions, as a function of distance from the electrode and surrounding flux barriers, allowing an effective focal hypoxia tool to be designed for in vitro cell culture study. O2 concentration is reduced in an electrochemically defined targeted area from normoxia to hypoxia in about 6 min depending on the O2-flux boundaries. As a result, a cell culture-well was designed, where localised O2 scavenging could be induced. The impact of localised hypoxia was demonstrated on human neural progenitor cells (hNPCs) and it was shown that miniature focal hypoxic insults can be induced, that evoke time-dependent HIF-1α transcription factor accumulation. This transcription is "patterned" across the culture according to the electrochemically induced spatiotemporal hypoxia gradient. A basic lacunar infarct model was also developed through the application of eLOS in a purpose designed microfluidic device. Miniature focal hypoxic insults were induced in cellular processes of fully oxygenated cell bodies, such as the axons of human cortical neurons. The results demonstrate experimentally that localised axonal hypoxic stress can lead to significant increase of neuronal death, despite the neurons remaining at normoxia. This suggests that focal hypoxic insult to axons alone is sufficient to impact surrounding neurons and may provide an in vitro model to study the impact of microinfarcts occurring in the deep cerebral white matter, as well as providing a promising tool for wider understanding of acute hypoxic insults with potential to uncover its pathophysiology in multiple diseases.

17.
Biomedicines ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35625734

RESUMO

Ischemic eye diseases are major causes of vision impairment. Thus, potential retinoprotective effects of N'N-dimethyltryptamine (DMT) were investigated. To inhibit its rapid breakdown by monoamine-oxidase A (MAO-A) enzyme, DMT was co-administered with harmaline, a ß-carboline in the Amazonian Ayahuasca brew. Using ligation, 60 min of ischemia was provoked in eyes of rats, followed by 7 days of reperfusion whilst animals received harmaline alone, DMT + harmaline, or vehicle treatment. After 1 week of reperfusion, electroretinographical (ERG) measurements, histological analysis, and Western blot were performed. Harmaline alone exhibited retinoprotection in ischemia-reperfusion (I/R) which was, surprisingly, counterbalanced by DMT in case of co-administration. As both MAO-A inhibition and DMT increase serotoninergic tone synergistically, communicated to be anti-ischemic, thus, involvement of other pathways was investigated. Based on our experiments, DMT and harmaline exert opposite effects on important ocular proteins such as PARP1, NFκB, MMP9, or HSP70, each having a critical role in a different mechanism of eye-ischemia-related pathologies, e.g., cell death, inflammation, tissue destruction, and oxidative stress. Since DMT is proclaimed to be a promising drug candidate, its potentially undesirable effect on eye-ischemia should be further investigated. Meanwhile, this experiment revealed the potential therapeutic effect of MAO-A inhibitor harmaline in I/R-related eye diseases.

18.
Nat Commun ; 13(1): 2844, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606347

RESUMO

The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-ß1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.


Assuntos
Quinase 3 da Glicogênio Sintase , Células Neuroepiteliais , Diferenciação Celular/fisiologia , Córtex Cerebral , Humanos , Células-Tronco , Telencéfalo
19.
Pharmaceutics ; 14(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35213959

RESUMO

Impaired mitochondrial function is associated with several metabolic diseases and health conditions, including insulin resistance and type 2 diabetes (T2DM), as well as ageing. The close relationship between the above-mentioned diseases and cardiovascular disease (CVD) (diabetic cardiomyopathy and age-related cardiovascular diseases) has long been known. Mitochondria have a crucial role: they are a primary source of energy produced in the form of ATP via fatty acid oxidation, tricarboxylic acid (TCA) cycle, and electron transport chain (ETC), and ATP synthase acts as a key regulator of cardiomyocyte survival. Mitochondrial medicine has been increasingly discussed as a promising therapeutic approach in the treatment of CVD. It is well known that vitamin B3 as an NAD+ precursor exists in several forms, e.g., nicotinic acid (niacin) and nicotinamide (NAM). These cofactors are central to cellular homeostasis, mitochondrial respiration, ATP production, and reactive oxygen species generation and inhibition. Increasing evidence suggests that the nicotinic acid derivative BGP-15 ((3-piperidine-2-hydroxy-1-propyl)-nicotinic amidoxime) improves cardiac function by reducing the incidence of arrhythmias and improves diastolic function in different animal models. Our team has valid reasons to assume that these cardioprotective effects of BGP-15 are based on its NAD+ precursor property. Our hypothesis was supported by an animal experiment where ageing ZDF rats were treated with BGP-15 for one year. Haemodynamic variables were measured with echocardiography to detect diabetic cardiomyopathy (DbCM) and age-related CVD as well. In the ZDF group, advanced HF was diagnosed, whereas the BGP-15-treated ZDF group showed diastolic dysfunction only. The significant difference between the two groups was supported by post-mortem Haematoxylin and eosin (HE) and Masson's trichrome staining of cardiac tissues. Moreover, our hypothesis was further confirmed by the significantly elevated Cytochrome c oxidase (MTCO) and ATP synthase activity and expression detected with ELISA and Western blot analysis. To the best of our knowledge, this is the first study to demonstrate the protective effect of BGP-15 on cardiac mitochondrial respiration in an ageing ZDF model.

20.
Front Pharmacol ; 13: 1043275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588715

RESUMO

Cannabidiol (CBD), the most extensively studied non-intoxicating phytocannabinoid, has been attracting a lot of interest worldwide owing to its numerous beneficial effects. The aim of this study was to explore the effect that CBD exerts on the adenosinergic system of paced left atria isolated from obese type Zucker Diabetic Fatty (ZDF) rats, maintained on diabetogenic rat chow, received 60 mg/kg/day CBD or vehicle via gavage for 4 weeks. We found that N6-cyclopentyladenosine (CPA), a relatively stable and poorly transported A1 adenosine receptor agonist, elicited a significantly weaker response in the CBD-treated group than in the vehicle-treated one. In contrast, adenosine, a quickly metabolized and transported adenosine receptor agonist, evoked a significantly stronger response in the CBD-treated group than in the vehicle-treated counterpart (excepting its highest concentrations). These results can be explained only with the adenosine transport inhibitory property of CBD (and not with its adenosine receptor agonist activity). If all the effects of CBD are attributed to the interstitial adenosine accumulation caused by CBD in the myocardium, then a significantly increased adenosinergic activation can be assumed during the long-term oral CBD treatment, suggesting a considerably enhanced adenosinergic protection in the heart. Considering that our results may have been influenced by A1 adenosine receptor downregulation due to the chronic interstitial adenosine accumulation, an adenosinergic activation smaller than it seemed cannot be excluded, but it was above the CBD-naïve level in every case. Additionally, this is the first study offering functional evidence about the adenosine transport inhibitory action of CBD in the myocardium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...