Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Immunol ; 14: 1168635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215144

RESUMO

Introduction: Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results: Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion: Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.


Assuntos
Interleucina-4 , Fator A de Crescimento do Endotélio Vascular , Humanos , Camundongos , Animais , Interleucina-4/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
Muscle Nerve ; 67(5): 371-377, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36879542

RESUMO

INTRODUCTION/AIMS: Vaccination against coronavirus disease 2019 (COVID-19) is relatively safe in patients with idiopathic inflammatory myopathies (IIM); however, myositis flares following vaccination have been poorly studied. We aimed to evaluate the frequency, features, and outcomes of disease relapses in patients with IIM following COVID-19 vaccination. METHODS: A cohort of 176 IIM patients were interviewed after the third wave of the COVID-19 pandemic and followed prospectively. Relapses were determined using the disease state criteria and the outcome of the flares with myositis response criteria, calculating the total improvement score (TIS). RESULTS: A total of 146 (82.9%) patients received a vaccination, 17/146 (11.6%) patients had a relapse within 3 mo, and 13/146 (8.9%) patients within 1 mo. The relapse rate of unvaccinated patients was 3.3%. Three months after the post-vaccination relapses, 70.6% of the patients (12/17) achieved an improvement of disease activity (average TIS score: 30 ± 15.81; seven minor, five moderate, and zero major improvements). Six months after flares improvement was detected in 15/17(88.2%) of relapsed patients (average TIS score: 43.1 ± 19.53; 3 minimal, 8 moderate, and 4 major). Forward stepwise logistic regression analysis revealed that the active state of myositis at the time of injection (p < .0001; odds ratio, 33; confidence interval, 9-120) was significantly associated with the occurrence of a relapse. DISCUSSION: A minority of the vaccinated IIM patients had a confirmed disease flare after COVID-19 vaccination and the majority of the relapses improved after individualized treatment. An active disease state at the time of vaccination probably contributes to the increased risk of a post vaccination myositis flare.


Assuntos
COVID-19 , Miosite , Humanos , Vacinas contra COVID-19/uso terapêutico , Incidência , Pandemias , COVID-19/prevenção & controle , COVID-19/epidemiologia , Miosite/epidemiologia , Doença Crônica , Recidiva , Vacinação
3.
Mol Cell ; 83(1): 121-138.e7, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36521490

RESUMO

Cell cycle (CC) facilitates cell division via robust, cyclical gene expression. Protective immunity requires the expansion of pathogen-responsive cell types, but whether CC confers unique gene expression programs that direct the subsequent immunological response remains unclear. Here, we demonstrate that single macrophages (MFs) adopt different plasticity states in CC, which leads to heterogeneous cytokine-induced polarization, priming, and repolarization programs. Specifically, MF plasticity to interferon gamma (IFNG) is substantially reduced during S-G2/M, whereas interleukin 4 (IL-4) induces S-G2/M-biased gene expression, mediated by CC-biased enhancers. Additionally, IL-4 polarization shifts the CC-phase distribution of MFs toward the G2/M phase, providing a subpopulation-specific mechanism for IL-4-induced, dampened IFNG responsiveness. Finally, we demonstrate CC-dependent MF responses in murine and human disease settings in vivo, including Th2-driven airway inflammation and pulmonary fibrosis, where MFs express an S-G2/M-biased tissue remodeling gene program. Therefore, MF inflammatory and regenerative responses are gated by CC in a cyclical, phase-dependent manner.


Assuntos
Cromatina , Interleucina-4 , Humanos , Camundongos , Animais , Interleucina-4/genética , Interleucina-4/farmacologia , Cromatina/genética , Cromatina/metabolismo , Macrófagos/metabolismo , Interferon gama/genética , Interferon gama/farmacologia , Ciclo Celular/genética , Divisão Celular
4.
Clin Exp Rheumatol ; 41(2): 254-260, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35894072

RESUMO

OBJECTIVES: Pandemic caused by coronavirus disease (COVID-19) determines the life of clinicians and patients since 2 years. We have a lot of information about disease course, treatment and protection against virus, but less on the prognosis of infection in patients with idiopathic inflammatory myopathies (IIM). Also few data are available on triggered humoral response and side effects after vaccination. METHODS: Our goal was to assess by a retrospective cross-sectional study the above data in our cohort (176 IIM patients) by identifying COVID-19 positive patients and follow disease course. Incidence and complications of vaccination were determined by questionnaires. 101 patients volunteered for complex blood test. RESULTS: By June 1st, 2021 significantly higher incidence of COVID 19 infections (34.7%) were identified comparing to the national prevalence (8.2%). A third of these infections occurred asymptomatically or mild. Patients requiring hospitalisation had a significantly longer disease duration and a higher incidence of anti-Jo-1 antibody. All patients infected by COVID-19 became seropositive regardless the immunosuppressive therapy or symptoms severity. 54.3% of the patients received anti-COVID-19 vaccine. 72.3% of patients became seropositive after vaccination. Higher antibody titer against spike protein was detected after Pfizer-BioNTech vaccination compared to others. Patients receiving steroid therapy had decreased post-vaccination antibody response compared to those without steroid treatment. No major post-vaccination infection was observed. CONCLUSIONS: Based on our results, myositis may be associated with an increased risk of COVID-19 infection. Independent risk factor for hospitalisation are longer disease duration and anti-Jo1 positivity. Anti-SARS-CoV2 vaccines seem safe and tolerable and strongly recommended for that population.


Assuntos
COVID-19 , Pandemias , Humanos , Estudos Transversais , Estudos Retrospectivos , Progressão da Doença , Esteroides
5.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36323312

RESUMO

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Assuntos
Interleucina-4 , Lipopolissacarídeos , Camundongos , Animais , Interleucina-4/metabolismo , Lipopolissacarídeos/metabolismo , Ligantes , Epigenômica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigênese Genética , NF-kappa B/metabolismo
6.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36433226

RESUMO

Today, integration into automated systems has become a priority in the development of remote sensing sensors carried on drones. For this purpose, the primary task is to achieve real-time data processing. Increasing sensor resolution, fast data capture and the simultaneous use of multiple sensors is one direction of development. However, this poses challenges on the data processing side due to the increasing amount of data. Our study intends to investigate how the running time and accuracy of commonly used image classification algorithms evolve using Altum Micasense multispectral and thermal acquisition data with GSD = 2 cm spatial resolution. The running times were examined for two PC configurations, with a 4 GB and 8 GB DRAM capacity, respectively, as these parameters are closer to the memory of NRT microcomputers and laptops, which can be applied "out of the lab". During the accuracy assessment, we compared the accuracy %, the Kappa index value and the area ratio of correct pixels. According to our results, in the case of plant cover, the Spectral Angles Mapper (SAM) method achieved the best accuracy among the validated classification solutions. In contrast, the Minimum Distance (MD) method achieved the best accuracy on water surface. In terms of temporality, the best results were obtained with the individually constructed decision tree classification. Thus, it is worth developing these two directions into real-time data processing solutions.


Assuntos
Algoritmos , Telemetria
7.
FEBS J ; 288(22): 6476-6491, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33899329

RESUMO

Necroptosis is a regulated necrotic-like cell death modality which has come into the focus of attention since it is known to contribute to the pathogenesis of many inflammatory and degenerative diseases as well as to tumor regulation. Based on current data, necroptosis serves as a backup mechanism when death receptor-induced apoptosis is inhibited or absent. However, the necroptotic role of the proteins involved in mitochondrial apoptosis has not been investigated. Here, we demonstrated that the stimulation of several death and pattern recognition receptors induced necroptosis under caspase-compromised conditions in wild-type, but not in caspase-9-negative human Jurkat and murine MEF cells. Cerulein-induced pancreatitis was significantly reduced in mice with acinar cell-restricted caspase-9 gene knockout. The absence of caspase-9 led to impaired association of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 and resulted in decreased phosphorylation of RIP kinases, but the overexpression of RIPK1 or RIPK3 rescued the effect of caspase-9 deficiency. Inhibition of either Aurora kinase A (AURKA) or its known substrate, glycogen synthase kinase 3ß (GSK3ß) restored necroptosis sensitivity of caspase-9-deficient cells, indicating an interplay between caspase-9 and AURKA-mediated pathways to regulate necroptosis. Our findings suggest that caspase-9 acts as a newly identified regulator of necroptosis, and thus, caspase-9 provides a promising therapeutic target to manipulate the immunological outcome of cell death.


Assuntos
Caspase 9/metabolismo , Necrose/metabolismo , Animais , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos , Pancreatite/metabolismo
8.
Immunobiology ; 226(1): 152032, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316542

RESUMO

Dendritic cells (DCs), as potent phagocytes engulf dead cells and present peptide fragments of tumor antigens or pathogens derived from infected cells to naïve CD8+ T-lymphocytes. Dendritic cells can also induce apoptosis in target cells, thus getting an opportunity to sample their microenvironment. Here, we present that the supernatants of LPS- or CL075-activated DCs induced cell death in different cell lines, but during the differentiation to mature DCs, they lost their cytotoxic potential. Dexamethasone-pre-treated tolerogenic DCs induced less intensive death indicating that the tissue microenvironment can downregulate DC-mediated killing. Exploring the signaling of DC-induced cell death, we observed that the supernatant of activated DCs induced TNF-dependent cell death, since TNF antagonist blocked the cytotoxic activity of DCs, contrary to inhibitors of Fas and TRAIL receptors. We identified that the DC-induced killing is at least partially a RIPK1-dependent process, as RIPK1 positive target cells were more susceptible to DC-induced cell death than their RIPK1 deficient counterparts. Moreover, both the elevated phosphorylation of RIPK1 and the increase in RIPK1-caspase-8 interaction in target cells suggest that RIPK1-mediated signals contribute to DC supernatant-induced cell death. We also proved that the cytotoxic activity of DC-derived supernatant induced apoptosis in the target cells and not necroptosis, as it was completely abrogated with the pan caspase inhibitor (Z-VAD), while the necroptosis inhibitor (Nec-1) had no effect. Our work revealed that the supernatant of activated DCs induces the apoptosis of target cells in a RIPK1-dependent manner. This phenomenon could be relevant for the initiation of cross-presentation and may broaden the plethora of cytotoxic mechanisms acting against tumor cells.


Assuntos
Células Dendríticas/imunologia , Neoplasias/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Morte Celular , Apresentação Cruzada , Citotoxicidade Imunológica , Células HT29 , Humanos , Tolerância Imunológica , Oligopeptídeos/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Neurosci ; 14: 474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581670

RESUMO

Background: Stress-induced cellular changes in limbic brain structures contribute to the development of various psychopathologies. In vivo detection of these microstructural changes may help us to develop objective biomarkers for psychiatric disorders. Diffusion tensor imaging (DTI) is an advanced neuroimaging technique that enables the non-invasive examination of white matter integrity and provides insights into the microstructure of pathways connecting brain areas. Objective: Our aim was to examine the temporal dynamics of stress-induced structural changes with repeated in vivo DTI scans and correlate them with behavioral alterations. Methods: Out of 32 young adult male rats, 16 were exposed to daily immobilization stress for 3 weeks. Four DTI measurements were done: one before the stress exposure (baseline), two scans during the stress (acute and chronic phases), and a last one 2 weeks after the end of the stress protocol (recovery). We used a 4.7T small-animal MRI system and examined 18 gray and white matter structures calculating the following parameters: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). T2-weighted images were used for volumetry. Cognitive performance and anxiety levels of the animals were assessed in the Morris water maze, novel object recognition, open field, and elevated plus maze tests. Results: Reduced FA and increased MD and RD values were found in the corpus callosum and external capsule of stressed rats. Stress increased RD in the anterior commissure and reduced MD and RD in the amygdala. We observed time-dependent changes in several DTI parameters as the rats matured, but we found no evidence of stress-induced volumetric alterations in the brains. Stressed rats displayed cognitive impairments and we found numerous correlations between the cognitive performance of the animals and between various DTI metrics of the inferior colliculus, corpus callosum, anterior commissure, and amygdala. Conclusions: Our data provide further support to the translational value of DTI studies and suggest that chronic stress exposure results in similar white matter microstructural alterations that have been documented in stress-related psychiatric disorders. These DTI findings imply microstructural abnormalities in the brain, which may underlie the cognitive deficits that are often present in stress-related mental disorders.

10.
Cancer Immunol Immunother ; 69(11): 2193-2207, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32472370

RESUMO

Controlling the balance of pro-inflammatory M1 versus anti-inflammatory M2 macrophages may have paramount therapeutic benefit in cardiovascular diseases, infections, cancer and chronic inflammation. The targeted depletion of different macrophage populations provides a therapeutic option to regulate macrophage-mediated functions. Macrophages are highly sensitive to necroptosis, a newly described regulated cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain like pseudokinase. Antagonists of inhibitors of apoptosis proteins (SMAC mimetics) block RIPK1 ubiquitination, while TGF-activated kinase 1 (TAK1) inhibitors prevent the phosphorylation of RIPK1, resulting in increased necroptosis. We compared the sensitivity of monocyte-derived human M1 and M2 cells to various apoptotic and necroptotic signals. The two cell types were equally sensitive to all investigated stimuli, but TAK1 inhibitor induced more intense necroptosis in M2 cells. Consequently, the treatment of co-cultured M1 and M2 cells with TAK1 inhibitor shifted the balance of the two populations toward M1 dominance. Blockage of either Aurora Kinase A or glycogen synthase kinase 3ß, two newly described necroptosis inhibitors, increased the sensitivity of M1 cells to TAK1-inhibitor-induced cell death. Finally, we demonstrated that in vitro differentiated tumor-associated macrophages (TAM-like cells) were as highly sensitive to TAK1 inhibitor-induced necroptosis as M2 cells. Our results indicate that at least two different necroptotic pathways operate in macrophages and the targeted elimination of different macrophage populations by TAK1 inhibitor or SMAC mimetic may provide a therapeutic option to regulate the balance of inflammatory/anti-inflammatory macrophage functions.


Assuntos
Lactonas/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Resorcinóis/farmacologia , Humanos , Macrófagos/metabolismo
11.
Langmuir ; 34(48): 14652-14660, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30395475

RESUMO

Polyelectrolyte (PE)/surfactant (S) mixtures play a distinguished role in the efficacy of shampoos and toiletries primarily due to the deposition of PE/S precipitates on the hair surface upon dilution of the formulations. The classical interpretation of this phenomenon is a simple composition change during which the system enters the two-phase region. Recent studies, however, indicated that the phase properties of PE/S mixtures could be strongly affected by the applied solution preparation protocols. In the present work, we aimed at studying the impact of dilution on the nonequilibrium aggregate formation in the sodium poly(styrenesulfonate) (NaPSS)/dodecyltrimethylammonium bromide (DTAB)/NaCl system. Mixtures prepared with hundredfold dilution of concentrated NaPSS/DTAB/NaCl solutions in water were compared with those ones made by rapid mixing of dilute NaPSS/NaCl and DTAB/NaCl solutions. The study revealed that the phase-separation concentration range as well as the composition, morphology, and visual appearance of the precipitates were remarkably different in the two cases. These observations clearly demonstrate that the dilution/deposition process is also related to the nonequilibrium phase properties of PE/S systems, which can be used to modulate the efficiency of various commercial applications.

12.
Front Pharmacol ; 9: 786, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083103

RESUMO

Marijuana is a widely used recreational drug with increasing legalization worldwide for medical purposes. Most experimental studies use either synthetic or plant-derived cannabinoids to investigate the effect of cannabinoids on anxiety and cognitive functions. The aim of this study was to mimic real life situations where young people smoke cannabis regularly to relax from everyday stress. Therefore, we exposed young adult male NMRI mice to daily stress and concomitant marijuana smoke for 2 months and investigated the consequences on physiology, behavior and adult hippocampal neurogenesis. Animals were restrained for 6-h/day for 5-days a week. During the stress, mice were exposed to cannabis smoke for 2 × 30 min/day. We burned 2 "joints" (2 × 0.8 g marijuana) per occasion in a whole body smoking chamber. Cannabinoid content of the smoke and urine samples was measured by HPLC and SFC-MS/MS. Body weight gain was recorded daily and we did unrestrained, whole body plethysmography to investigate pulmonary functions. The cognitive performance of the animals was evaluated by the novel object recognition and Y maze tests. Anxietyrelated spontaneous locomotor activity and self-grooming were assessed in the open field test (OFT). Adult neurogenesis was quantified post mortem in the hippocampal dentate gyrus. The proliferative activity of the precursor cells was detected by the use of the exogenous marker 5-bromo-20-deoxyuridine. Treatment effects on maturing neurons were studied by the examination of doublecortin-positive neurons. Both stress and cannabis exposure significantly reduced body weight gain. Cannabis smoke had no effect on pulmonary functions, but stress delayed the maturation of several lung functions. Neither stress, nor cannabis smoke affected the cognitive functioning of the animals. Results of the OFT revealed that cannabis had a mild anxiolytic effect and markedly increased self-grooming behavior. Stress blocked cell proliferation in the dentate gyrus, but cannabis had no effect on this parameter. Marijuana smoke however had a pronounced impact on doublecortin-positive neurons influencing their number, morphology and migration. In summary, we report here that long-term stress in combination with cannabis smoke exposure can alter several health-related measures, but the present experimental design could not reveal any interaction between these two treatment factors except for body weight gain.

13.
Front Cell Neurosci ; 12: 148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973870

RESUMO

Clinical and experimental data suggest that fronto-cortical GABAergic deficits contribute to the pathophysiology of major depressive disorder (MDD). To further test this hypothesis, we used a well characterized rat model for depression and examined the effect of stress on GABAergic neuron numbers and GABA-mediated synaptic transmission in the medial prefrontal cortex (mPFC) of rats. Adult male Wistar rats were subjected to 9-weeks of chronic mild stress (CMS) and based on their hedonic-anhedonic behavior they were behaviorally phenotyped as being stress-susceptible (anhedonic) or stress-resilient. Post mortem quantitative histopathology was used to examine the effect of stress on parvalbumin (PV)-, calretinin- (CR), calbindin- (CB), cholecystokinin- (CCK), somatostatin-(SST) and neuropeptide Y-positive (NPY+) GABAergic neuron numbers in all cortical subareas of the mPFC (anterior cingulate (Cg1), prelimbic (PrL) and infralimbic (IL) cortexes). In vitro, whole-cell patch-clamp recordings from layer II-III pyramidal neurons of the ventral mPFC was used to examine GABAergic neurotransmission. The cognitive performance of the animals was assessed in a hippocampal-prefrontal-cortical circuit dependent learning task. Stress exposure reduced the number of CCK-, CR- and PV-positive GABAergic neurons in the mPFC, most prominently in the IL cortex. Interestingly, in the stress-resilient animals, we found higher number of neuropeptide Y-positive neurons in the entire mPFC. The electrophysiological analysis revealed reduced frequencies of spontaneous and miniature IPSCs in the anhedonic rats and decreased release probability of perisomatic-targeting GABAergic synapses and alterations in GABAB receptor mediated signaling. In turn, pyramidal neurons showed higher excitability. Anhedonic rats were also significantly impaired in the object-place paired-associate learning task. These data demonstrate that long-term stress results in functional and structural deficits of prefrontal GABAergic networks. Our findings support the concept that fronto-limbic GABAergic dysfunctions may contribute to emotional and cognitive symptoms of MDD.

14.
Immunol Lett ; 193: 42-50, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175315

RESUMO

Efficient adjuvants have the potential to trigger both innate and adaptive immune responses simultaneously. Flagellin is a unique pathogen-derived protein, which is recognized by pattern recognition receptors (PRRs) as well as by B-cell and T cell receptors thus providing an important link between innate and adaptive immunity. The aforementioned properties define flagellin as an optimal adjuvant. The induction of immunogenic cell death could be an additional expectation for adjuvants in the context of cancer immunotherapy due to their ability to activate dendritic cells (DC) to present tumor antigens through the engulfment of dying cells. The immunostimulatory potential of flagellin in the course of DC and lymphocyte activation is well documented, however the exact mechanism is not fully explored. Based on this limitation we sought to investigate the potential modulatory effects of flagellin on various cell death processes knowing that it plays detrimental roles in regulating the final outcome of various types of immune responses. Here we provide evidence that the pre-treatment of Jurkat T-cells with recombinant flagellin is able to increase the degree of cell death provoked by FasL or TNF-α, and concomitantly increases the cytotoxic potential of phytohemagglutinin activated T-lymphocytes in a TLR5 dependent way. In contrast to these flagellin-mediated effects on the death receptor-induced signaling events, the mitochondrial apoptotic pathway remained unaffected. Furthermore, the cell culture supernatant of wild type Salmonella enteritidis bacteria, but not their flagellin deficient variant, was able to enhance the Fas-induced cell death process. To define the molecular mechanisms of flagellin-mediated elevated levels of cell death we were able to detect the upregulation of RIP1-dependent signaling events. These findings demonstrate that the cooperative actions of pattern recognition and different death receptors are able to initiate the cell death process with the mobilization of RIP-dependent cell death modalities. This finding highlights the capability of flagellin to act as a potential adjuvant which is relevant for tumor immunotherapy.


Assuntos
Adjuvantes Imunológicos , Flagelina/metabolismo , Receptores de Morte Celular/metabolismo , Salmonella enteritidis/genética , Linfócitos T/imunologia , Imunidade Adaptativa , Apoptose , Células Dendríticas/fisiologia , Proteína Ligante Fas/metabolismo , Flagelina/genética , Humanos , Imunidade Inata , Células Jurkat , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
15.
J Child Health Care ; 21(2): 171-180, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29119827

RESUMO

In the context of limited healthcare resources and increasing demands for more cost-effective healthcare solutions, this study assessed the short- and long-term clinical outcomes and resource utilization of a two-week inpatient, interdisciplinary, pain treatment (IIPT) including individual and group cognitive behavioural, occupational, physical and recreational therapy, education and family intervention and a booster in the chronic paediatric pain setting. Using a longitudinal design with a two-year follow-up, two-week IIPT resulted in sustainable improvements in mean and maximum pain intensity, physical functioning and internalization and reductions in the mean number of medical visits, school absence and frequency of pain medication at year 2 following IIPT. While pain-related disability scores did not improve, problem-focused coping became more prevalent, and patient and parent-assessed satisfaction as well as pain experience continued to improve throughout the study. Our results demonstrate that a two-week IIPT with a booster confers meaningful short- and long-term improvements in clinical outcomes and resource utilization among paediatric patients with severe chronic pain.


Assuntos
Dor Crônica/psicologia , Pacientes Internados/psicologia , Manejo da Dor/métodos , Pediatria , Adaptação Psicológica , Adolescente , Criança , Terapia Cognitivo-Comportamental , Feminino , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos , Inquéritos e Questionários , Adulto Jovem
16.
Front Immunol ; 8: 427, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458670

RESUMO

Dendritic cells are considered as the main coordinators of both mucosal and systemic immune responses, thus playing a determining role in shaping the outcome of effector cell responses. However, it is still uncovered how primary human monocyte-derived DC (moDC) populations drive the polarization of helper T (Th) cells in the presence of commensal bacteria harboring unique immunomodulatory properties. Furthermore, the individual members of the gut microbiota have the potential to modulate the outcome of immune responses and shape the immunogenicity of differentiating moDCs via the activation of retinoic acid receptor alpha (RARα). Here, we report that moDCs are able to mediate robust Th1 and Th17 responses upon stimulation by Escherichia coli Schaedler or Morganella morganii, while the probiotic Bacillus subtilis strain limits this effect. Moreover, physiological concentrations of all-trans retinoic acid (ATRA) are able to re-program the differentiation of moDCs resulting in altered gene expression profiles of the master transcription factors RARα and interferon regulatory factor 4, and concomitantly regulate the cell surface expression levels of CD1 proteins and also the mucosa-associated CD103 integrin to different directions. It was also demonstrated that the ATRA-conditioned moDCs exhibited enhanced pro-inflammatory cytokine secretion while reduced their co-stimulatory and antigen-presenting capacity thus reducing Th1 and presenting undetectable Th17 type responses against the tested microbiota strains. Importantly, these regulatory circuits could be prevented by the selective inhibition of RARα functionality. These results altogether demonstrate that selected commensal bacterial strains are able to drive strong effector immune responses by moDCs, while in the presence of ATRA, they support the development of both tolerogenic and inflammatory moDC in a RARα-dependent manner.

17.
Biom J ; 59(4): 626-635, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27346828

RESUMO

For clinical studies in which two coprimary endpoints are necessary for assuring efficacy of the treatment of interest, it is important to determine the minimal sample size needed to attain a certain conjunctive power (i.e., power to reject false null hypothesis for both endpoints). The traditional method of assigning the square root of the targeted overall power to each of the two hypothesis tests is optimal only when the standardized treatment effect sizes of the two endpoints are equal. In spite of this limitation the square root method is applied routinely, resulting in frequent overestimation of the overall sample size. A new, iterative method is presented to find the two individual power values for the two endpoints so that the targeted overall power is attained with the smallest possible overall sample size. The principle is to assign more power to the endpoint for which a larger standardized effect size is likely to occur based on prior information. The main assumption of the new method is the independence of endpoints. However, this is not a serious limitation in case of type II error, thus the method yields a good approximation even if the condition of independence is not fulfilled. The advantages of the new method are (a) a considerable saving (up to 24% in our examples) in the overall sample size, (b) the flexibility as it can be applied to any combination of endpoint types (e.g., normally distributed + binomial, survival + binomial, etc.) and (c) easy to program.


Assuntos
Pesquisa Biomédica/métodos , Ensaios Clínicos como Assunto , Interpretação Estatística de Dados , Humanos , Tamanho da Amostra
18.
Hippocampus ; 27(1): 17-27, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27571571

RESUMO

Stress can alter the number and morphology of excitatory synapses in the hippocampus, but nothing is known about the effect of stress on inhibitory synapses. Here, we used an animal model for depression, the chronic mild stress model, and quantified the number of perisomatic inhibitory neurons and their synapses. We found reduced density of parvalbumin-positive (PV+) neurons in response to stress, while the density of cholecystokinin-immunoreactive (CCK+) neurons was unaffected. We did a detailed electron microscopic analysis to quantify the frequency and morphology of perisomatic inhibitory synapses in the hippocampal CA1 area. We analyzed 1100 CA1 pyramidal neurons and 4800 perisomatic terminals in five control and four chronically stressed rats. In the control animals we observed the following parameters: Number of terminals/soma = 57; Number of terminals/100 µm cell perimeter = 10; Synapse/terminal ratio = 32%; Synapse number/100 terminal = 120; Average terminal length = 920nm. None of these parameters were affected by the stress exposure. Overall, these data indicate that despite the depressive-like behavior and the decrease in the number of perisomatic PV+ neurons in the light microscopic preparations, the number of perisomatic inhibitory synapses on CA1 pyramidal cells was not affected by stress. In the electron microscope, PV+ neurons and the axon terminals appeared to be normal and we did not find any apoptotic or necrotic cells. This data is in sharp contrast to the remarkable remodeling of the excitatory synapses on spines that has been reported in response to stress and depressive-like behavior. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.


Assuntos
Transtorno Depressivo/patologia , Terminações Pré-Sinápticas/ultraestrutura , Células Piramidais/ultraestrutura , Sinapses/ultraestrutura , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/ultraestrutura , Contagem de Células , Colecistocinina/metabolismo , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Inibição Neural , Parvalbuminas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/metabolismo , Ratos Wistar , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Sinapses/metabolismo
19.
Behav Brain Res ; 316: 104-114, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27555539

RESUMO

Cortical GABAergic dysfunctions have been documented by clinical studies in major depression. We used here an animal model for depression and investigated whether long-term stress exposure can affect the number of GABAergic neurons in the orbitofrontal cortex (OFC). Adult male rats were subjected to 7-weeks of daily stress exposure and behaviorally phenotyped as anhedonic or stress-resilient animals. GABAergic interneurons were identified by immunohistochemistry and systematically quantified. We analyzed calbindin-(CB), calretinin-(CR), cholecystokinin-(CCK), parvalbumin-(PV), neuropeptide Y-(NPY) and somatostatin-positive (SST+) neurons in the following specific subareas of the OFC: medial orbital (MO), ventral orbital (VO), lateral orbital (LO) and dorsolateral orbital (DLO) cortex. For comparison, we also analyzed the primary motor cortex (M1) as a non-limbic cortical area. Stress had a pronounced effect on CB+ neurons and reduced their densities by 40-50% in the MO, VO and DLO. Stress had no effect on CCK+, CR+, PV+, NPY+ and SST+ neurons in any cortical areas. None of the investigated GABAergic neurons were affected by stress in the primary motor cortex. Interestingly, in the stress-resilient animals, we observed a significantly increased density of CCK+ neurons in the VO. NPY+ neuron densities were also significantly different between the anhedonic and stress-resilient rats, but only in the LO. Our present data demonstrate that chronic stress can specifically reduce the density of calbindin-positive GABAergic neurons in the orbitofrontal cortex and suggest that NPY and CCK expression in the OFC may relate to the stress resilience of the animals.


Assuntos
Depressão/patologia , Neurônios GABAérgicos/patologia , Córtex Pré-Frontal/patologia , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Contagem de Células , Colecistocinina/metabolismo , Depressão/etiologia , Modelos Animais de Doenças , Preferências Alimentares/fisiologia , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , Neuropeptídeo Y/metabolismo , Parvalbuminas/metabolismo , Ratos , Ratos Wistar , Somatostatina/metabolismo , Estresse Psicológico/complicações , Sacarose/administração & dosagem
20.
PLoS One ; 11(6): e0158000, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27327445

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, with increasing prevalence affecting millions of people worldwide. Currently, only autopsy is able to confirm the diagnosis with a 100% certainty, therefore, biomarkers from body fluids obtained by non-invasive means provide an attractive alternative for the diagnosis of Alzheimer`s disease. Global changes of the protein profile were examined by quantitative proteomics; firstly, electrophoresis and LC-MS/MS were used, thereafter, SRM-based targeted proteomics method was developed and applied to examine quantitative changes of tear proteins. Alterations in the tear flow rate, total tear protein concentration and composition of the chemical barrier specific to AD were demonstrated, and the combination of lipocalin-1, dermcidin, lysozyme-C and lacritin was shown to be a potential biomarker, with an 81% sensitivity and 77% specificity.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores/análise , Lágrimas/química , Idoso , Idoso de 80 Anos ou mais , Proteínas do Olho/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Curva ROC , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...