Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 70: 11-23, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34116423

RESUMO

The utility of machine learning in understanding the motor system is promising a revolution in how to collect, measure, and analyze data. The field of movement science already elegantly incorporates theory and engineering principles to guide experimental work, and in this review we discuss the growing use of machine learning: from pose estimation, kinematic analyses, dimensionality reduction, and closed-loop feedback, to its use in understanding neural correlates and untangling sensorimotor systems. We also give our perspective on new avenues, where markerless motion capture combined with biomechanical modeling and neural networks could be a new platform for hypothesis-driven research.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Fenômenos Biomecânicos , Movimento (Física) , Movimento
2.
IEEE Trans Haptics ; 13(1): 204-210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32012023

RESUMO

Notable advancements have been achieved in providing amputees with sensation through invasive and non-invasive haptic feedback systems such as mechano-, vibro-, electro-tactile and hybrid systems. Purely mechanical-driven feedback approaches, however, have been little explored. In this paper, we now created a haptic feedback system that does not require any external power source (such as batteries) or other electronic components (see Fig. 1 ). The system is low-cost, lightweight, adaptable and robust against external impact (such as water). Hence, it will be sustainable in many aspects. We have made use of latest multi-material 3D printing technology (Stratasys Objet500 Connex3) being able to fabricate a soft sensor and a mechano-tactile feedback actuator made of a rubber (TangoBlack Plus) and plastic (VeroClear) material. When forces are applied to the fingertip sensor, fluidic pressure inside the system acts on the membrane of the feedback actuator resulting in mechano-tactile sensation. Our [Formula: see text] feedback actuator is able to transmit a force range between 0.2 N (the median touch threshold) and 2.1 N (the maximum force transmitted by the feedback actuator at a 3 mm indentation) corresponding to force range exerted to the fingertip sensor of 1.2-18.49 N.


Assuntos
Retroalimentação Sensorial , Desenho de Prótese/instrumentação , Desenho de Prótese/métodos , Percepção do Tato , Tato , Adulto , Feminino , Dedos/fisiologia , Análise de Elementos Finitos , Humanos , Hidrodinâmica , Masculino , Limiar Sensorial , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...