Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neurosci ; : 1-11, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38625841

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a multifactorial neurodegenerative disorder with a significant contribution of non-cell autonomous mechanisms to motor neuronal degeneration. Amongst a plethora of molecules, fractalkine (C-X3-C motif chemokine ligand 1), and Heat Shock Protein 60 (HSP60), are key modulators of microglial activation. The contribution of these molecules in Sporadic ALS (SALS) remains unexplored. To investigate this, fractalkine levels were estimated in Cerebrospinal fluid (CSF) of SALS patients (ALS-CSF; n = 44) by Enzyme-linked Immunosorbent Assay (ELISA) and correlated with clinical parameters including disease severity and duration. CSF HSP60 levels were estimated by Western blotting (ALS-CSF; n = 19). Also, CSF levels of Chitotriosidase-1 (CHIT-1), a microglia-specific neuroinflammatory molecule, were measured and its association, if any, with fractalkine and HSP60 was investigated. Both fractalkine and HSP60 levels were significantly elevated in ALS-CSF. Similar to our earlier observation, CHIT-1 levels were also upregulated. Fractalkine showed a moderate negative correlation with the ALS-Functional Rating Scale (ALSFRS) score indicating its significant rise in mild cases which plateaued in cases with high disease severity. However, no obvious correlation was found between fractalkine, HSP60, and CHIT-1. Our study hints that high fractalkine levels in mild cases might be conferring neuroprotection by combating microglial activation and highlights its importance as a novel therapeutic target for SALS. On the other hand, significantly enhanced levels of HSP60, a pro-inflammatory molecule, hint towards its role in accentuating microgliosis, although, it doesn't act synergistically with CHIT-1. Our study suggests that fractalkine and HSP60 act independently of CHIT-1 to suppress and accentuate neuroinflammation, respectively.

2.
Mol Neurobiol ; 60(9): 4855-4871, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37184766

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder with multifactorial pathomechanisms affecting not only motor neurons but also glia. Both astrocytes and microglia get activated and contribute significantly to neurodegeneration. The role of oligodendroglia in such a situation remains obscure, especially in the sporadic form of ALS (SALS), which contributes to 90% of cases. Here, we have investigated the role of oligodendroglia in SALS pathophysiology using a human oligodendroglial cell line, MO3.13, by exposing the cells to cerebrospinal fluid from SALS patients (ALS-CSF; 10% v/v for 48 h). ALS-CSF significantly reduced the viability of MO3.13 cells and down-regulated the expression of oligodendroglia-specific proteins, namely, CNPase and Olig2. Furthermore, to investigate the effect of the observed oligodendroglial changes on motor neurons, NSC-34 motor neuronal cells were co-cultured/supplemented with conditioned/spent medium of MO3.13 cells upon exposure to ALS-CSF. Live cell imaging experiments revealed protection to NSC-34 cells against ALS-CSF toxicity upon co-culture with MO3.13 cells. This was evidenced by the absence of neuronal cytoplasmic vacuolation and beading of neurites, which instead resulted in better neuronal differentiation. Enhanced lactate levels and increased expression of its transporter, MCT-1, with sustained expression of trophic factors, namely, GDNF and BDNF, by MO3.13 cells hint towards metabolic and trophic support provided by the surviving oligodendroglia. Similar metabolic changes were seen in the lumbar spinal cord oligodendroglia of rat neonates intrathecally injected with ALS-CSF. The findings indicate that oligodendroglia are indeed rescuer to the degenerating motor neurons when the astrocytes and microglia turn topsy-turvy.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Animais , Ratos , Esclerose Lateral Amiotrófica/metabolismo , Neuroproteção , Células Cultivadas , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Oligodendroglia/metabolismo
3.
Dis Model Mech ; 15(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239094

RESUMO

Cellular migration is a ubiquitous feature that brings brain cells into appropriate spatial relationships over time; and it helps in the formation of a functional brain. We studied the migration patterns of induced pluripotent stem cell-derived neural precursor cells (NPCs) from individuals with familial bipolar disorder (BD) in comparison with healthy controls. The BD patients also had morphological brain abnormalities evident on magnetic resonance imaging. Time-lapse analysis of migrating cells was performed, through which we were able to identify several parameters that were abnormal in cellular migration, including the speed and directionality of NPCs. We also performed transcriptomic analysis to probe the mechanisms behind the aberrant cellular phenotype identified. Our analysis showed the downregulation of a network of genes, centering on EGF/ERBB proteins. The present findings indicate that collective, systemic dysregulation may produce the aberrant cellular phenotype, which could contribute to the functional and structural changes in the brain reported for bipolar disorder. This article has an associated First Person interview with the first author of the paper.


Assuntos
Transtorno Bipolar , Células-Tronco Neurais , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Encéfalo/patologia , Fator de Crescimento Epidérmico , Humanos , Imageamento por Ressonância Magnética , Células-Tronco Neurais/patologia
4.
J Neuroinflammation ; 17(1): 232, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762702

RESUMO

BACKGROUND: Cerebrospinal fluid from amyotrophic lateral sclerosis patients (ALS-CSF) induces neurodegenerative changes in motor neurons and gliosis in sporadic ALS models. Search for identification of toxic factor(s) in CSF revealed an enhancement in the level and enzyme activity of chitotriosidase (CHIT-1). Here, we have investigated its upregulation in a large cohort of samples and more importantly its role in ALS pathogenesis in a rat model. METHODS: CHIT-1 level in CSF samples from ALS (n = 158), non-ALS (n = 12) and normal (n = 48) subjects were measured using ELISA. Enzyme activity was also assessed (ALS, n = 56; non-ALS, n = 10 and normal-CSF, n = 45). Recombinant CHIT-1 was intrathecally injected into Wistar rat neonates. Lumbar spinal cord sections were stained for Iba1, glial fibrillary acidic protein and choline acetyl transferase to identify microglia, astrocytes and motor neurons respectively after 48 h of injection. Levels of tumour necrosis factor-α and interleukin-6 were measured by ELISA. FINDINGS: CHIT-1 level in ALS-CSF samples was increased by 20-fold and it can distinguish ALS patients with a sensitivity of 87% and specificity of 83.3% at a cut off level of 1405.43 pg/ml. Enzyme activity of CHIT-1 was also 15-fold higher in ALS-CSF and has a sensitivity of 80.4% and specificity of 80% at cut off value of 0.1077989 µmol/µl/min. Combining CHIT-1 level and activity together gave a positive predictive value of 97.78% and negative predictive value of 100%. Administration of CHIT-1 increased microglial numbers and astrogliosis in the ventral horn with a concomitant increase in the levels of pro-inflammatory cytokines. Amoeboid-shaped microglial and astroglial cells were also present around the central canal. CHIT-1 administration also resulted in the reduction of motor neurons. CONCLUSIONS: CHIT-1, an early diagnostic biomarker of sporadic ALS, activates glia priming them to attain a toxic phenotype resulting in neuroinflammation leading to motor neuronal death.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encefalite/metabolismo , Hexosaminidases/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Adulto , Esclerose Lateral Amiotrófica/patologia , Animais , Biomarcadores/metabolismo , Encefalite/patologia , Feminino , Humanos , Masculino , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Neurônios Motores/patologia , Degeneração Neural/patologia , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Medula Espinal/patologia
5.
Neurodegener Dis ; 17(1): 44-58, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27617773

RESUMO

BACKGROUND: The survival of motor neurons is dependent upon neurotrophic factors both during childhood and adolescence and during adult life. In disease conditions, such as in patients with amyotrophic lateral sclerosis (ALS), the mRNA levels of trophic factors like brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2 (FGF-2), and vascular endothelial growth factor are downregulated. This was replicated in our in vivo experimental system following the injection of cerebral spinal fluid (CSF) of sporadic ALS (ALS-CSF) patients. OBJECTIVE: To evaluate the protective role of BDNF in a model of sporadic ALS patients. METHODS: The expressions of endogenous BDNF, its receptor TrkB, the enzyme choline acetyl transferase (ChAT), and phosphorylated neurofilaments were studied in NSC-34 cells. The calcium-buffering and proapoptotic effects were assessed by calbindin-D28K and caspase-3 expression, respectively. RESULTS: ALS-CSF considerably depleted the endogenous BDNF protein, while its effect on IGF-1 and FGF-2 was inconsequential; this indirectly indicates a key role for BDNF in supporting motor neuronal survival. The exogenous supplementation of BDNF reversed autocrine expression; however, it may not be completely receptor mediated, as the TrkB levels were not restored. BDNF completely revived ChAT expression. It may inhibit apoptosis by restoring Ca2+ homeostasis, since caspase-3 and calbindin-D28K expression was back to normal. The organellar ultrastructural changes were only partially reversed. CONCLUSION: Our study provides evidence that BDNF supplementation ameliorates most but not all degenerative changes. The incomplete revival at the ultrastructural level signifies the requirement of factors other than BDNF for near-total protection of motor neurons, and, to an extent, it explains why only a partial success is achieved in clinical trials with BDNF in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Neurônios Motores/efeitos dos fármacos , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Camundongos , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Ratos Wistar , Receptor trkB/metabolismo , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia
6.
Neurochem Res ; 41(5): 965-84, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26646005

RESUMO

In our laboratory, we have developed (1) an in vitro model of sporadic Amyotrophic Lateral Sclerosis (sALS) involving exposure of motor neurons to cerebrospinal fluid (CSF) from sALS patients and (2) an in vivo model involving intrathecal injection of sALS-CSF into rat pups. In the current study, we observed that spinal cord extract from the in vivo sALS model displayed elevated reactive oxygen species (ROS) and mitochondrial dysfunction. Quantitative proteomic analysis of sub-cellular fractions from spinal cord of the in vivo sALS model revealed down-regulation of 35 mitochondrial proteins and 4 lysosomal proteins. Many of the down-regulated mitochondrial proteins contribute to alterations in respiratory chain complexes and organellar morphology. Down-regulated lysosomal proteins Hexosaminidase, Sialidase and Aryl sulfatase also displayed lowered enzyme activity, thus validating the mass spectrometry data. Proteomic analysis and validation by western blot indicated that sALS-CSF induced the over-expression of the pro-apoptotic mitochondrial protein BNIP3L. In the in vitro model, sALS-CSF induced neurotoxicity and elevated ROS, while it lowered the mitochondrial membrane potential in rat spinal cord mitochondria in the in vivo model. Ultra structural alterations were evident in mitochondria of cultured motor neurons exposed to ALS-CSF. These observations indicate the first line evidence that sALS-CSF mediated mitochondrial and lysosomal defects collectively contribute to the pathogenesis underlying sALS.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Lisossomos/metabolismo , Mitocôndrias/fisiologia , Extratos de Tecidos/farmacologia , Adulto , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Injeções Espinhais , Masculino , Potencial da Membrana Mitocondrial , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Estresse Oxidativo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
Mol Neurobiol ; 51(3): 995-1007, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24880751

RESUMO

Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Idoso , Esclerose Lateral Amiotrófica/patologia , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/patologia , Degeneração Neural/patologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
8.
Clin Proteomics ; 10(1): 19, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24295388

RESUMO

BACKGROUND: Potential biomarkers to aid diagnosis and therapy need to be identified for Amyotrophic Lateral Sclerosis, a progressive motor neuronal degenerative disorder. The present study was designed to identify the factor(s) which are differentially expressed in the cerebrospinal fluid (CSF) of patients with sporadic amyotrophic lateral sclerosis (SALS; ALS-CSF), and could be associated with the pathogenesis of this disease. RESULTS: Quantitative mass spectrometry of ALS-CSF and control-CSF (from orthopaedic surgical patients undergoing spinal anaesthesia) samples showed upregulation of 31 proteins in the ALS-CSF, amongst which a ten-fold increase in the levels of chitotriosidase-1 (CHIT-1) was seen compared to the controls. A seventeen-fold increase in the CHIT-1 levels was detected by ELISA, while a ten-fold elevated enzyme activity was also observed. Both these results confirmed the finding of LC-MS/MS. CHIT-1 was found to be expressed by the Iba-1 immunopositive microglia. CONCLUSION: Elevated CHIT-1 levels in the ALS-CSF suggest a definitive role for the enzyme in the disease pathogenesis. Its synthesis and release from microglia into the CSF may be an aligned event of neurodegeneration. Thus, high levels of CHIT-1 signify enhanced microglial activity which may exacerbate the process of neurodegeneration. In view of the multifold increase observed in ALS-CSF, it can serve as a potential CSF biomarker for the diagnosis of SALS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...