Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 319: 137904, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709846

RESUMO

A pilot study among farming households in eastern Iowa was conducted to assess human exposure to neonicotinoids (NEOs). The study was in a region with intense crop and livestock production and where groundwater is vulnerable to surface-applied contaminants. In addition to paired outdoor (hydrant) water and indoor (tap) water samples from private wells, urine samples were collected from 47 adult male pesticide applicators along with the completions of dietary and occupational surveys. Estimated Daily Intake (EDI) were then calculated to examine exposures for different aged family members. NEOs were detected in 53% of outdoor and 55% of indoor samples, with two or more NEOs in 13% of samples. Clothianidin was the most frequently detected NEO in water samples. Human exposure was ubiquitous in urine samples. A median of 10 different NEOs and/or metabolites were detected in urine, with clothianidin, nitenpyram, thiamethoxam, 6-chloronicotinic acid, and thiacloprid amide detected in every urine samples analyzed. Dinotefuran, imidaclothiz, acetamiprid-N-desmethyl, and N-desmethyl thiamethoxam were found in ≥70% of urine samples. Observed water intake for study participants and EDIs were below the chronic reference doses (CRfD) and acceptable daily intake (ADI) standards for all NEOs indicating minimal risk from ingestion of tap water. The study results indicate that while the consumption of private well tap water provides a human exposure pathway, the companion urine results provide evidence that diet and/or other exposure pathways (e.g., occupational, house dust) may contribute to exposure more than water contamination. Further biomonitoring research is needed to better understand the scale of human exposure from different sources.


Assuntos
Inseticidas , Adulto , Humanos , Masculino , Idoso , Inseticidas/análise , Tiametoxam , Prevalência , Iowa , Projetos Piloto , Neonicotinoides , Nitrocompostos , Agricultura , Água
2.
Chemosphere ; 281: 130856, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34029958

RESUMO

A statewide assessment of neonicotinoids in groundwater was conducted among a sample of public water supply wells in Iowa from October 2017 to August 2018. Samples from all the state's major aquifer groups were initially collected from 118 wells in 69 counties. Subsets of 55 untreated samples and 45 paired pre- and post-treatment samples were then collected in summer 2018, post-planting season for primarily corn and soybeans, to assess seasonal differences and the efficacy of treatment. Samples prepared using solid phase extraction were analyzed using LC/MS/MS for six neonicotinoids: acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, thiamethoxam, and a sulfoximine (i.e., sulfoxaflor). Clothianidin was the most frequently detected (34%, max: 13.4 ng/L), followed by thiamethoxam (14.4%, max: 20.6 ng/L), imidacloprid (13%, max: 2.3 ng/L), and dinotefuran (0.1%, max: 1.4 ng/L). Alluvial aquifers (unadjusted odds ratio (UOR) = 14.1; 95% CI (5.4-36.9), p=<0.0001), wells with confining layers <15 m (UOR = 13.5, 95% CI (4.8-38.4), p=<0.0001), and less than 19.4 m in depth (UOR = 20.0; 95% CI (6.5-58.0), p=<0.0001) had the greatest risk for contamination. In vulnerable aquifers, neonicotinoids were detected in 62% of winter and 46% of summer samples, with winter samples over 3 times (UOR = 3.2; 95% CI (1.2-8.8), p = 0.02) more likely to have at least two neonicotinoids detected. In 55 public water supply systems, the median concentrations of clothianidin (p = 0.6), imidacloprid (p = 0.7), and thiamethoxam (p = 0.7) were unchanged following treatment. These results suggest that neonicotinoid contamination may be present year-round in treated drinking water from vulnerable groundwater sources and represent a source of human exposure.


Assuntos
Água Subterrânea , Inseticidas , Guanidinas , Humanos , Inseticidas/análise , Iowa , Neonicotinoides , Nitrocompostos , Piridinas , Compostos de Enxofre , Espectrometria de Massas em Tandem
3.
Environ Sci Process Impacts ; 22(6): 1315-1346, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32267911

RESUMO

Neonicotinoid insecticides are widely used in both urban and agricultural settings around the world. Historically, neonicotinoid insecticides have been viewed as ideal replacements for more toxic compounds, like organophosphates, due in part to their perceived limited potential to affect the environment and human health. This critical review investigates the environmental fate and toxicity of neonicotinoids and their metabolites and the potential risks associated with exposure. Neonicotinoids are found to be ubiquitous in the environment, drinking water, and food, with low-level exposure commonly documented below acceptable daily intake standards. Available toxicological data from animal studies indicate possible genotoxicity, cytotoxicity, impaired immune function, and reduced growth and reproductive success at low concentrations, while limited data from ecological or cross-sectional epidemiological studies have identified acute and chronic health effects ranging from acute respiratory, cardiovascular, and neurological symptoms to oxidative genetic damage and birth defects. Due to the heavy use of neonicotinoids and potential for cumulative chronic exposure, these insecticides represent novel risks and necessitate further study to fully understand their risks to humans.


Assuntos
Inseticidas , Neonicotinoides , Agricultura , Animais , Anormalidades Congênitas , Estudos Transversais , Exposição Ambiental , Saúde Ambiental , Humanos , Inseticidas/toxicidade , Neonicotinoides/toxicidade
4.
ACS Appl Mater Interfaces ; 8(18): 11431-40, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27093306

RESUMO

We developed an electrospun carbon nanofiber-carbon nanotube (CNF-CNT) composite with optimal sorption capacity and material strength for point-of-use (POU) water treatment. Synthesis variables including integration of multiwalled carbon nanotubes (CNTs) and macroporosity (via sublimation of phthalic acid), relative humidity (20 and 40%), and stabilization temperature (250 and 280 °C) were used to control nanofiber diameter and surface area (from electron microscopy and BET isotherms, respectively), surface composition (from XPS), and strength (from AFM nanoindentation and tensile strength tests). Composites were then evaluated using kinetic, isotherm, and pH-edge sorption experiments with sulfamethoxazole (log Kow = 0.89) and atrazine (log Kow = 2.61), representative micropollutants chosen for their different polarities. Although CNFs alone were poor sorbents, integration of CNTs and macroporosity achieved uptake comparable to granular activated carbon. Through reactivity comparisons with CNT dispersions, we propose that increasing macroporosity exposes the embedded CNTs, thereby enabling their role as the primary sorbent in nanofiber composites. Because the highest capacity sorbents lacked sufficient strength, our optimal formulation (polyacrylonitrile 8 wt %, CNT 2 wt %, phthalic acid 2.4 wt %; 40% relative humidity; 280 °C stabilization) represents a compromise between strength and performance. This optimized sorbent was tested with a mixture of ten organic micropollutants at environmentally relevant concentrations in a gravity-fed, flow-through filtration system, where removal trends suggest that both hydrophobic and specific binding interactions contribute to micropollutant uptake. Collectively, this work highlights the promise of CNF-CNT filters (e.g., mechanical strength, ability to harness CNT sorption capacity), while also prioritizing areas for future research and development (e.g., improved removal of highly polar micropollutants, sensitivity to interfering cosolutes).


Assuntos
Nanofibras , Nanotubos de Carbono , Carvão Vegetal , Filtração , Purificação da Água
5.
Sci Total Environ ; 550: 1075-1083, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26867086

RESUMO

In this study, the efficacy of water treatment technologies: ultra-filtration (UF), powdered activated carbon (PAC), coagulation (COA) and a combination of these technologies (PAC/UF and COA/UF) to remove target pharmaceuticals (Acetaminophen, Bezafibrate, Caffeine, Carbamazepine, Cotinine, Diclofenac, Gemfibrozil, Ibuprofen, Metoprolol, Naproxen, Sulfadimethoxine, Sulfamethazine, Sulfamethoxazole, Sulfathiazole, Triclosan and Trimethoprim) was investigated. Samples of wastewater from municipal WWTPs were analyzed using direct aqueous injection High Performance Liquid Chromatography with Tandem Quadrupole Mass Spectrometric (LC/MS/MS) detection. On concentration basis, results showed an average removal efficiency of 29%, 50%, and 7%, respectively, for the UF, PAC dosage of 50ppm, and COA dosage of 10ppm. When PAC dosage of 100ppm was used as pretreatment to the combined PAC and UF in-line membrane system, a 90.3% removal efficiency was achieved. The removal efficiency of UF in tandem with COA was 33%, an increase of 4% compared with the single UF treatment. The adsorption effect of PAC combined with the physical separation process of UF revealed the best treatment strategy for removing pharmaceutical contaminant from water.


Assuntos
Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Membranas Artificiais , Ultrafiltração/métodos , Águas Residuárias/química
6.
J Fluor Chem ; 128(6): 595-607, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18516235

RESUMO

Alkylated perfluorooctanesulfonamides are compounds of environmental concern. To make these compounds available for environmental and toxicological studies, a series of N-alkylated perfluorooctanesulfonamides and structurally related compounds were synthesized by reaction of the corresponding perfluoroalkanesulfonyl fluoride with a suitable primary or secondary amine. Perfluoroalkanesulfonamidoethanols were obtained from the N-alkyl perfluoroalkanesulfonamides either by direct alkylation with bromoethanol or alkylation with acetic acid 2-bromo-ethyl ester followed by hydrolysis of the acetate. N-Alkyl perfluorooctanesulfonamidoacetates were synthesized in an analogous way by alkylation of N-alkyl perfluoroalkanesulfonamides with a bromo acetic acid ester, followed by basic ester hydrolysis. Alternatively, N-alkyl perfluoroalkanesulfonamides can be alkylated with an appropriate alcohol using the Mitsunobu reaction. Perfluorooctanesulfonamide was synthesized from the perfluorooctanesulfonyl fluoride via the azide by reduction with Zn/HCl. All perfluorooctanesulfonamides contained linear as well as branched C(8)F(17) isomers, typically in a 20:1 to 30:1 ratio. The crystal structures of N-ethyl and N,N-diethyl perfluorooctanesulfonamide show that the S-N bond has considerable double bond character. This double bond character results in a significant rotational barrier around the S-N bond (ΔG(≠) = 62-71 kJ mol(-1)) and a preferred solid state and solution conformation in which the N-alkyl groups are oriented opposite to the perfluorooctyl group to minimize steric crowding around the S-N bond.

7.
Environ Sci Technol ; 39(15): 5524-30, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16124283

RESUMO

The origin and amount of perfluorooctane surfactants in wastewater treatment systems, and the transformation these compounds may undergo during treatment, were evaluated through measurement and experiment. Influent, effluent, and river water at the point of discharge for a 6-MGD wastewater treatment plant (WWTP) were screened for eight perfluorooctane surfactants. N-EtFOSAA was quantified in influent (5.1 +/- 0.8 ng/L), effluent (3.6 +/- 0.2 ng/ L), and river water samples (1.2 +/- 0.3 ng/L), while PFOS and PFOA were quantified in effluent (26 +/- 2.0 and 22 +/- 2.1 ng/L, respectively) and river water (23 +/- 1.5 and 8.7 +/- 0.8 ng/L, respectively). Signals for PFOS and PFOA were observed in influent samples, but exact quantitative determination could not be made due to low recoveries of these two compounds in field spike samples. Although the source of PFOS and PFOA observed in WWTP effluents is not clear, two hypotheses were examined: (1) the highly substituted perfluorooctane surfactants that constitute commercially available fabric protectors can be transformed to PFOS and PFOA during biological treatment in wastewater treatment systems, and (2) the end products themselves are directly introduced to WWTPs because they are present as residual in the commercial mixtures. Biotransformation experiments of 96 h were run to determine whether N-EtFOSE (a primary monomer used in 3M's polymer surface protection products) could be transformed to lesser-substituted perfluorooctane compounds in bioreactors amended with aerobic and anaerobic sludge from the sampled plant. At the end of the aerobic biotransformation experiment, N-EtFOSAA and PFOSulfinate were the only two metabolites formed and each accounted for 23 +/- 5.0% and 5.3 +/- 0.8% of the transformed parent on a molar basis, respectively. Transformation of N-EtFOSE was not observed under anaerobic conditions. A sample of a commercially available surface protection product from 1994 was analyzed and found to contain six of the targeted perfluorinated surfactants, including PFOS and PFOA. These findings suggest transformation of precursors within wastewater treatment is not an important source of these compounds compared to direct use and disposal of products containing the end products as residual amounts.


Assuntos
Fluorocarbonos/análise , Água Doce/análise , Tensoativos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Aerobiose , Anaerobiose , Biodegradação Ambiental
8.
Anal Chem ; 74(15): 3754-9, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12175163

RESUMO

A Good Laboratory Practices (GLP) validated, multiresidue analytical method is presented for the determination of the chloroacetanilide herbicides metolachlor, acetochlor, and alachlor, the chloroacetamide herbicide dimethenamid, and their respective ethanesulfonic (ESA) and oxanillic (OA) acid degradates in ground and surface water. A 50-mL water sample is subjected to purification using a C-18 SPE column. The four parent components and their eight ESA and OA degradates are isolated using 80/20 methanol/water (v/v) for elution. The eluate is reduced to < 1.0 mL and reconstituted in 10/90 acetonitrile/water (v/v) to the desired final fraction volume. Final analysis is accomplished using liquid chromatography/electrospray ionization-mass spectrometry/mass spectrometry in the + (parent compounds) and - (ESA and OA degradates) ion modes by monitoring appropriate precursor/product ion pairs for each of the 12 analytes. The method limit of quantification is 0.10 ppb and the limit of detection is 0.125 ng injected for each analyte. Average procedural recovery data range from 95 to 105% for fortification levels of 0.10-100 ppb. The method validation study was performed following GLP guidelines.


Assuntos
Herbicidas/análise , Ácido Oxâmico/análogos & derivados , Poluentes da Água/análise , Acetamidas/análise , Acetanilidas/análise , Alcanossulfonatos/análise , Cromatografia Líquida de Alta Pressão , Água Doce/análise , Herbicidas/normas , Espectrometria de Massas por Ionização por Electrospray , Toluidinas/análise , Poluentes da Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...