Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 147(12): 2731-2738, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35583034

RESUMO

Islet transplantation is a potential therapy for type 1 diabetes, but it is expensive due to limited pancreas donor numbers and the variability in islet quality. The latter is often addressed by co-culture of harvested islets with stem cells to promote in vitro remodeling of their basement membrane and enable expression of angiogenic factors for enhancing vascularization. However, given the heterogeneity in islet size, shape and function, there is a need for metrics to assess the reorganization dynamics of single islets over the co-culture period. Based on shape-evolution of individual multi-cell aggregates formed during co-culture of human islets with adipose derived stem cells and the pressures required for their bypass through microfluidic constrictions, we present size-normalized biomechanical metrics for monitoring the reorganization. Aggregates below a threshold size exhibit faster reorganization, as evident from rise in their biomechanical opacity and tightening of their size distribution, but this size threshold increases over culture time to include a greater proportion of the aggregates. Such biomechanical metrics can quantify the subpopulation of reorganized aggregates by distinguishing them versus those with incomplete reorganization, over various timepoints during the co-culture.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Tecido Adiposo , Técnicas de Cocultura , Humanos , Insulina , Ilhotas Pancreáticas/metabolismo , Células-Tronco/metabolismo
2.
Organs Chip ; 42022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36865345

RESUMO

The integration of vasculature at physiological scales within 3D cultures of cell-laden hydrogels for the delivery of spatiotemporal mass transport, chemical and mechanical cues, is a stepping-stone towards building in vitro tissue models that recapitulate in vivo cues. To address this challenge, we present a versatile method to micropattern adjoining hydrogel shells with a perfusable channel or lumen core, for enabling facile integration with fluidic control systems, on one hand, and to cell-laden biomaterial interfaces, on the other hand. This microfluidic imprint lithography methodology utilizes the high tolerance and reversible nature of the bond alignment process to lithographically position multiple layers of imprints within a microfluidic device for sequential filling and patterning of hydrogel lumen structures with single or multiple shells. Through fluidic interfacing of the structures, the ability to deliver physiologically relevant mechanical cues for recapitulating cyclical stretch on the hydrogel shell and shear stress on endothelial cells in the lumen are validated. We envision application of this platform for recapitulation of the bio-functionality and topology of micro-vasculatures, alongside the ability to deliver transport and mechanical cues, as needed for 3D culture to construct in vitro tissue models.

3.
Anal Bioanal Chem ; 412(16): 3881-3889, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32372273

RESUMO

The trapping and deflection of biological cells by dielectrophoresis (DEP) at field non-uniformities in a microfluidic device is often conducted in a contactless dielectrophoresis (cDEP) mode, wherein the electrode channel is in a different layer than the sample channel, so that field penetration through the interceding barrier causes DEP above critical cut-off frequencies. In this manner, through physical separation of the electrode and sample channels, it is possible to spatially modulate electric fields with no electrode-induced damage to biological cells in the sample channel. However, since this device requires interlayer alignment of the electrode to sample channel and needs to maintain a thin interceding barrier (~ 15 µm) over the entire length over which DEP is needed (~ 1 cm), variations in alignment and microstructure fidelity cause wide variations in cDEP trapping level and frequency response across devices. We present a strategy to eliminate interlayer alignment by fabricating self-aligned electrode and sample channels, simultaneously with the interceding barrier layer (14-µm width and 50-µm depth), using a single-layer imprint and bond process on cyclic olefin copolymer. Specifically, by designing support structures, we preserve fidelity of the high aspect ratio insulating posts in the sample channel and the interceding barrier between the sample and electrode channels over the entire device footprint (~ 1 cm). The device operation is validated based on impedance measurements to quantify field penetration through the interceding barrier and by DEP trapping measurements. The presented fabrication strategy can eventually improve cDEP device manufacturing protocols to enable more reproducible DEP performance. Graphical abstract.


Assuntos
Alcenos/química , Eletroforese/instrumentação , Dispositivos Lab-On-A-Chip , Polímeros/química , Desenho de Equipamento
4.
Anal Bioanal Chem ; 412(16): 3847-3857, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32128645

RESUMO

Phenotypic quantification of cells based on their plasma membrane capacitance and cytoplasmic conductivity, as determined by their dielectrophoretic frequency dispersion, is often used as a marker for their biological function. However, due to the prevalence of phenotypic heterogeneity in many biological systems of interest, there is a need for methods capable of determining the dielectrophoretic dispersion of single cells at high throughput and without the need for sample dilution. We present a microfluidic device methodology wherein localized constrictions in the microchannel are used to enhance the field delivered by adjoining planar electrodes, so that the dielectrophoresis level and direction on flow-focused cells can be determined on each traversing cell in a high-throughput manner based on their deflected flow streamlines. Using a sample of human red blood cells diluted to 2.25 × 108 cells/mL, the dielectrophoretic translation of single cells traversing at a flow rate of 1.68 µL/min is measured at a throughput of 1.1 × 105 cells/min, to distinguish positive versus negative dielectrophoresis and determine their crossover frequency in media of differing conductivity for validation of the computed membrane capacitance to that from prior methods. We envision application of this dynamic dielectrophoresis (Dy-DEP) method towards high-throughput measurement of the dielectric dispersion of single cells to stratify phenotypic heterogeneity of a particular sample based on their DEP crossover frequency, without the need for significant sample dilution. Grapical abstract.


Assuntos
Separação Celular/métodos , Eletroforese/métodos , Ensaios de Triagem em Larga Escala/métodos , Análise de Célula Única/métodos , Técnicas Analíticas Microfluídicas/instrumentação
5.
Anal Chem ; 91(16): 10424-10431, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31333013

RESUMO

Diagnostics based on exosomes and other extracellular vesicles (EVs) are emerging as strategies for informing cancer progression and therapies, since the lipid content and macromolecular cargo of EVs can provide key phenotypic and genotypic information on the parent tumor cell and its microenvironment. We show that EVs derived from more invasive pancreatic tumor cells that express high levels of tumor-specific surface proteins and are composed of highly unsaturated lipids that increase membrane fluidity, exhibit significantly higher conductance versus those derived from less invasive tumor cells, based on dielectrophoresis measurements. Furthermore, through specific binding of the EVs to gold nanoparticle-conjugated antibodies, we show that these conductance differences can be modulated in proportion to the type as well as level of expressed tumor-specific antigens, thereby presenting methods for selective microfluidic enrichment and cytometry-based quantification of EVs based on invasiveness of their parent cell.


Assuntos
Antígenos de Neoplasias/análise , Vesículas Extracelulares/química , Proteínas de Neoplasias/análise , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/patologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Comunicação Celular , Linhagem Celular Tumoral , Condutividade Elétrica , Eletroforese , Ouro/química , Xenoenxertos , Humanos , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos Nus , Técnicas Analíticas Microfluídicas , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/genética
6.
Lab Chip ; 17(21): 3682-3691, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28975176

RESUMO

The long-term management of type-1 diabetes (T1D) is currently achieved through lifelong exogenous insulin injections. Although there is no cure for T1D, transplantation of pancreatic islets of Langerhans has the potential to restore normal endocrine function versus the morbidity of hypoglycemic unawareness that is commonly associated with sudden death among fragile diabetics. However, since endocrine islet tissues form a small proportion of the pancreas, sufficient islet numbers can be reached only by combining islets from multiple organ donors and the transplant plug contains significantly high levels of exocrine acinar tissue, thereby exacerbating immune responses. Hence, lifelong administration of immunosuppressants is required after transplantation, which can stress islet cells. The density gradient method that is currently used to separate islets from acinar tissue causes islets to be sparsely distributed over the centrifuged bins, so that the transplant sample obtained by combining multiple bins also contains significant acinar tissue levels. We show that in comparison to the significant size and density overlaps between the islet and acinar tissue populations post-organ digestion, their deformability overlaps are minimal. This feature is utilized to design a microfluidic separation strategy, wherein tangential flows enable selective deformation of acinar populations towards the bifurcating waste stream and sequential switching of hydrodynamic resistance enables the collection of rigid islets. Using 25 bifurcating daughter channels, a throughput of ∼300 islets per hour per device is obtained for enabling islet enrichment from relatively dilute starting levels to purity levels that meet the transplant criteria, as well as to further enhance islet purity from samples following density gradient enrichment. Based on confirmation of viability and functionality of the microfluidic-isolated islets using insulin secretion analysis and an angiogenesis assay, we envision utilizing this strategy to generate small-volume transplant plugs with high islet purity and significantly reduced acinar levels for minimizing immune responses after transplantation.


Assuntos
Células Acinares/citologia , Separação Celular/instrumentação , Separação Celular/métodos , Ilhotas Pancreáticas/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Células Acinares/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Ilhotas Pancreáticas/fisiologia , Pâncreas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...