Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 10(6): e01028, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36426895

RESUMO

Bleomycin-induced lung fibrosis is a debilitating disease, linked to high morbidity and mortality in chemotherapy patients. The MRTF/SRF transcription pathway has been proposed as a potential therapeutic target, as it is critical for myofibroblast differentiation, a hallmark of fibrosis. In human lung fibroblasts, the MRTF/SRF pathway inhibitor, CCG-257081, effectively decreased mRNA levels of downstream genes: smooth muscle actin and connective tissue growth factor, with IC50 s of 4 and 15 µM, respectively. The ability of CCG-257081 to prevent inflammation and fibrosis, measured via pulmonary collagen content and histopathology, was tested in a murine model of bleomycin-induced lung fibrosis. Animals were given intraperitoneal bleomycin for 4 weeks and concurrently dosed with CCG-257081 (0, 10, 30, and 100 mg/kg PO), a clinical anti-fibrotic (nintedanib) or the clinical standard of care (prednisolone). Mice treated with 100 mg/kg CCG-257081 gained weight vs. vehicle-treated control mice, while those receiving nintedanib and prednisolone lost significant weight. Hydroxyproline content and histological findings in tissue of animals on 100 mg/kg CCG-257081 were not significantly different from naive tissue, indicating successful prevention. Measures of tissue fibrosis were comparable between CCG-257081 and nintedanib, but only the MRTF/SRF inhibitor decreased plasminogen activator inhibitor-1 (PAI-1), a marker linked to fibrosis, in bronchoalveolar lavage fluid. In contrast, prednisolone led to marked increases in lung fibrosis by all metrics. This study demonstrates the potential use of MRTF/SRF inhibitors to prevent bleomycin-induced lung fibrosis in a clinically relevant model of the disease.


Assuntos
Bleomicina , Fibrose Pulmonar , Humanos , Animais , Camundongos , Bleomicina/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Inflamação , Fibroblastos , Prednisolona
2.
J Biol Chem ; 292(25): 10651-10663, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28490631

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a single transmembrane molecule uniquely expressed in microglia. TREM2 mutations are genetically linked to Nasu-Hakola disease and associated with multiple neurodegenerative disorders, including Alzheimer's disease. TREM2 may regulate microglial inflammation and phagocytosis through coupling to the adaptor protein TYRO protein-tyrosine kinase-binding protein (TYROBP). However, there is no functional system for monitoring this protein-protein interaction. We developed a luciferase-based modality for real-time monitoring of TREM2-TYROBP coupling in live cells that utilizes split-luciferase complementation technology based on TREM2 and TYROBP fusion to the C- or N-terminal portion of the Renilla luciferase gene. Transient transfection of human embryonic kidney 293 cells with this reporter vector increased luciferase activity upon stimulation with an anti-TREM2 antibody, which induces their homodimerization. This was confirmed by ELISA-based analysis of the TREM2-TYROBP interaction. Antibody-mediated TREM2 stimulation enhanced spleen tyrosine kinase (SYK) activity and uptake of Staphylococcus aureus in microglial cell line BV-2 in a kinase-dependent manner. Interestingly, the TREM2 T66M mutation significantly enhanced luciferase activity without stimulation, indicating constitutive coupling to TYROBP. Finally, flow cytometry analyses indicated significantly lower surface expression of T66M TREM2 variant than wild type or other TREM2 variants. These results demonstrate that our TREM2 reporter vector is a novel tool for monitoring the TREM2-TYROBP interaction in real time.


Assuntos
Citometria de Fluxo/métodos , Teste de Complementação Genética/métodos , Luciferases de Renilla/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Humanos , Lipodistrofia/genética , Lipodistrofia/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Quinase Syk/genética , Quinase Syk/metabolismo
3.
Neurobiol Aging ; 50: 134-143, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27960107

RESUMO

The precise molecular and cellular events responsible for age-dependent cognitive dysfunctions remain unclear. We report that Rheb (ras homolog enriched in brain) GTPase, an activator of mammalian target of rapamycin (mTOR), regulates memory functions in mice. Conditional depletion of Rheb selectively in the forebrain of mice obtained from crossing Rhebf/f and CamKIICre results in spontaneous signs of age-related memory loss, that is, spatial memory deficits (T-maze, Morris water maze) without affecting locomotor (open-field test), anxiety-like (elevated plus maze), or contextual fear conditioning functions. Partial depletion of Rheb in forebrain was sufficient to elicit memory defects with little effect on the neuronal size, cortical thickness, or mammalian target of rapamycin activity. Rheb depletion, however, increased the levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protein elevated in aging and Alzheimer's disease. Overall, our study demonstrates that forebrain Rheb promotes aging-associated cognitive defects. Thus, molecular understanding of Rheb pathway in brain may provide new therapeutic targets for aging and/or Alzheimer's disease-associated memory deficits.


Assuntos
Envelhecimento/psicologia , Transtornos da Memória/etiologia , Proteínas Monoméricas de Ligação ao GTP/deficiência , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neuropeptídeos/deficiência , Neuropeptídeos/fisiologia , Prosencéfalo/enzimologia , Envelhecimento/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Disfunção Cognitiva/etiologia , Camundongos Mutantes , Camundongos Transgênicos , Terapia de Alvo Molecular , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Sirolimo/metabolismo , Memória Espacial
4.
Neurobiol Aging ; 36(11): 2995-3007, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26315370

RESUMO

Cluster of Differentiation-200 (CD200) is an anti-inflammatory glycoprotein expressed in neurons, T cells, and B cells, and its receptor is expressed on glia. Both Alzheimer's disease patients and mouse models display age-related or amyloid-ß peptide (Aß)-induced reductions in CD200. The goal of this study was to determine if neuronal CD200 expression restores hippocampal neurogenesis and reduces Aß in the amyloid precursor protein mouse model. Amyloid precursor protein and wild-type mice were injected at 6 months of age with an adeno-associated virus expressing CD200 into the hippocampus and sacrificed at 12 months. CD200 expression restored neural progenitor cell proliferation and differentiation in the subgranular and granular cell layers of the dentate gyrus and reduced diffuse but not thioflavin-S(+) plaques in the hippocampus. In vitro studies demonstrated that CD200-stimulated microglia increased neural differentiation of neural stem cells and enhanced axon elongation and dendrite number. CD200 also enhanced Aß uptake by microglia. These data indicate that CD200 is capable of enhancing microglia-mediated Aß clearance and neural differentiation and has potential as a therapeutic for Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Antígenos CD/fisiologia , Hipocampo/fisiologia , Neurogênese/genética , Fagocitose/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígenos CD/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Hipocampo/citologia , Camundongos Transgênicos , Microglia/citologia , Microglia/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/efeitos dos fármacos , Células-Tronco/citologia
5.
Arch Immunol Ther Exp (Warsz) ; 60(4): 251-66, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22710659

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline of cognitive function. There is no therapy that can halt or reverse its progression. Contemporary research suggests that age-dependent neuroinflammatory changes may play a significant role in the decreased neurogenesis and cognitive impairments in AD. The innate immune response is characterized by pro-inflammatory (M1) activation of macrophages and subsequent production of specific cytokines, chemokines, and reactive intermediates, followed by resolution and alternative activation for anti-inflammatory signaling (M2a) and wound healing (M2c). We propose that microglial activation phenotypes are analogous to those of macrophages and that their activation plays a significant role in regulating neurogenesis in the brain. Microglia undergo a switch from an M2- to an M1-skewed activation phenotype during aging. This review will assess the neuroimmunological studies that led to characterization of the different microglial activation states in AD mouse models. It will also discuss the roles of microglial activation on neurogenesis in AD and propose anti-inflammatory molecules as exciting therapeutic targets for research. Molecules such as interleukin-4 and CD200 have proven to be important anti-inflammatory mediators in the regulation of neuroinflammation in the brain, which will be discussed in detail for their therapeutic potential.


Assuntos
Doença de Alzheimer/imunologia , Encéfalo/imunologia , Transtornos Cognitivos/imunologia , Microglia/imunologia , Animais , Antígenos CD/imunologia , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Interleucina-4/imunologia , Ativação de Macrófagos , Camundongos , Terapia de Alvo Molecular , Neuroimunomodulação , Regeneração
6.
J Neurosci ; 32(24): 8270-83, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22699908

RESUMO

Stress induces aggregation of RNA-binding proteins to form inclusions, termed stress granules (SGs). Recent evidence suggests that SG proteins also colocalize with neuropathological structures, but whether this occurs in Alzheimer's disease is unknown. We examined the relationship between SG proteins and neuropathology in brain tissue from P301L Tau transgenic mice, as well as in cases of Alzheimer's disease and FTDP-17. The pattern of SG pathology differs dramatically based on the RNA-binding protein examined. SGs positive for T-cell intracellular antigen-1 (TIA-1) or tristetraprolin (TTP) initially do not colocalize with tau pathology, but then merge with tau inclusions as disease severity increases. In contrast, G3BP (ras GAP-binding protein) identifies a novel type of molecular pathology that shows increasing accumulation in neurons with increasing disease severity, but often is not associated with classic markers of tau pathology. TIA-1 and TTP both bind phospho-tau, and TIA-1 overexpression induces formation of inclusions containing phospho-tau. These data suggest that SG formation might stimulate tau pathophysiology. Thus, study of RNA-binding proteins and SG biology highlights novel pathways interacting with the pathophysiology of AD, providing potentially new avenues for identifying diseased neurons and potentially novel mechanisms regulating tau biology.


Assuntos
Encéfalo/patologia , Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/patologia , Proteínas de Ligação a Poli(A)/metabolismo , Tauopatias/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Proteínas de Ligação a Poli-ADP-Ribose , Transporte Proteico , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Antígeno-1 Intracelular de Células T , Tauopatias/metabolismo , Tristetraprolina/metabolismo , Proteínas tau/metabolismo
7.
Biol Sex Differ ; 3: 5, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22336348

RESUMO

BACKGROUND: Calbindin-D28 has been used as a marker for the sexually dimorphic nucleus of the preoptic area (SDN-POA). Males have a distinct cluster of calbindin-immunoreactive (ir) cells in the medial preoptic area (CALB-SDN) that is reduced or absent in females. However, it is not clear whether the sex difference is due to the absolute number of calbindin-ir cells or to cell position (that is, spread), and the cellular mechanisms underlying the sex difference are not known. We examined the number of cells in the CALB-SDN and surrounding regions of C57Bl/6 mice and used mice lacking the pro-death gene, Bax, to test the hypothesis that observed sex differences are due to cell death. METHODS: Experiment 1 compared the number of cells in the CALB-SDN and surrounding regions in adult males, females, and females injected with estradiol benzoate on the day of birth. In experiment 2, cell number in the CALB-SDN and adjacent regions were compared in wild-type and Bax knockout mice of both sexes. In addition, calbindin-ir cells were quantified within the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), a nearby region that is larger in males due to Bax-dependent cell death. RESULTS: Males had more cells in the CALB-SDN as well as in surrounding regions than did females, and estradiol treatment of females at birth masculinized both measures. Bax deletion had no effect on cell number in the CALB-SDN or surrounding regions but increased calbindin-ir cell number in the BNSTp. CONCLUSIONS: The sex difference in the CALB-SDN of mice results from an estrogen-dependent difference in cell number with no evidence found for greater spread of cells in females. Blocking Bax-dependent cell death does not prevent sex differences in calbindin-ir cell number in the BNST or CALB-SDN but increases calbindin-ir cell number in the BNSTp of both sexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...