Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37788637

RESUMO

The availability of an ever-increasing diversity of prokaryotic genomes and metagenomes represents a major opportunity to understand and decipher the mechanisms behind the functional diversification of microbial biosynthetic pathways. However, it remains unclear to what extent a pathway producing a specific molecule from a specific precursor can diversify. In this study, we focus on the biosynthesis of ubiquinone (UQ), a crucial coenzyme that is central to the bioenergetics and to the functioning of a wide variety of enzymes in Eukarya and Pseudomonadota (a subgroup of the formerly named Proteobacteria). UQ biosynthesis involves three hydroxylation reactions on contiguous carbon atoms. We and others have previously shown that these reactions are catalyzed by different sets of UQ-hydroxylases that belong either to the iron-dependent Coq7 family or to the more widespread flavin monooxygenase (FMO) family. Here, we combine an experimental approach with comparative genomics and phylogenetics to reveal how UQ-hydroxylases evolved different selectivities within the constrained framework of the UQ pathway. It is shown that the UQ-FMOs diversified via at least three duplication events associated with two cases of neofunctionalization and one case of subfunctionalization, leading to six subfamilies with distinct hydroxylation selectivity. We also demonstrate multiple transfers of the UbiM enzyme and the convergent evolution of UQ-FMOs toward the same function, which resulted in two independent losses of the Coq7 ancestral enzyme. Diversification of this crucial biosynthetic pathway has therefore occurred via a combination of parallel evolution, gene duplications, transfers, and losses.


Assuntos
Duplicação Gênica , Ubiquinona , Ubiquinona/genética , Ubiquinona/metabolismo , Oxigenases de Função Mista/genética , Ferro/metabolismo
2.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594573

RESUMO

MOTIVATION: We address the challenge of inferring a consensus 3D model of genome architecture from Hi-C data. Existing approaches most often rely on a two-step algorithm: first, convert the contact counts into distances, then optimize an objective function akin to multidimensional scaling (MDS) to infer a 3D model. Other approaches use a maximum likelihood approach, modeling the contact counts between two loci as a Poisson random variable whose intensity is a decreasing function of the distance between them. However, a Poisson model of contact counts implies that the variance of the data is equal to the mean, a relationship that is often too restrictive to properly model count data. RESULTS: We first confirm the presence of overdispersion in several real Hi-C datasets, and we show that the overdispersion arises even in simulated datasets. We then propose a new model, called Pastis-NB, where we replace the Poisson model of contact counts by a negative binomial one, which is parametrized by a mean and a separate dispersion parameter. The dispersion parameter allows the variance to be adjusted independently from the mean, thus better modeling overdispersed data. We compare the results of Pastis-NB to those of several previously published algorithms, both MDS-based and statistical methods. We show that the negative binomial inference yields more accurate structures on simulated data, and more robust structures than other models across real Hi-C replicates and across different resolutions. AVAILABILITY AND IMPLEMENTATION: A Python implementation of Pastis-NB is available at https://github.com/hiclib/pastis under the BSD license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Genoma , Funções Verossimilhança
3.
Methods Mol Biol ; 2426: 1-24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36308682

RESUMO

In proteomic differential analysis, FDR control is often performed through a multiple test correction (i.e., the adjustment of the original p-values). In this protocol, we apply a recent and alternative method, based on so-called knockoff filters. It shares interesting conceptual similarities with the target-decoy competition procedure, classically used in proteomics for FDR control at peptide identification. To provide practitioners with a unified understanding of FDR control in proteomics, we apply the knockoff procedure on real and simulated quantitative datasets. Leveraging these comparisons, we propose to adapt the knockoff procedure to better fit the specificities of quantitative proteomic data (mainly very few samples). Performances of knockoff procedure are compared with those of the classical Benjamini-Hochberg procedure, hereby shedding a new light on the strengths and weaknesses of target-decoy competition.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Algoritmos
4.
Mol Ecol ; 32(10): 2674-2687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35000239

RESUMO

The shifts in adaptive strategies revealed by ecological succession and the mechanisms that facilitate these shifts are fundamental to ecology. These adaptive strategies could be particularly important in communities of arbuscular mycorrhizal fungi (AMF) mutualistic with sorghum, where strong AMF succession replaces initially ruderal species with competitive ones and where the strongest plant response to drought is to manage these AMF. Although most studies of agriculturally important fungi focus on parasites, the mutualistic symbionts, AMF, constitute a research system of human-associated fungi whose relative simplicity and synchrony are conducive to experimental ecology. First, we hypothesize that, when irrigation is stopped to mimic drought, competitive AMF species should be replaced by AMF species tolerant to drought stress. We then, for the first time, correlate AMF abundance and host plant transcription to test two novel hypotheses about the mechanisms behind the shift from ruderal to competitive AMF. Surprisingly, despite imposing drought stress, we found no stress-tolerant AMF, probably due to our agricultural system having been irrigated for nearly six decades. Remarkably, we found strong and differential correlation between the successional shift from ruderal to competitive AMF and sorghum genes whose products (i) produce and release strigolactone signals, (ii) perceive mycorrhizal-lipochitinoligosaccharide (Myc-LCO) signals, (iii) provide plant lipid and sugar to AMF, and (iv) import minerals and water provided by AMF. These novel insights frame new hypotheses about AMF adaptive evolution and suggest a rationale for selecting AMF to reduce inputs and maximize yields in commercial agriculture.


Assuntos
Micorrizas , Humanos , Micorrizas/genética , Simbiose/genética , Plantas/genética , Plantas/microbiologia , Agricultura , Expressão Gênica , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo
5.
Cogn Sci ; 46(5): e13134, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35579857

RESUMO

Free and open-source software projects have become essential digital infrastructure over the past decade. These projects are largely created and maintained by unpaid volunteers, presenting a potential vulnerability if the projects cannot recruit and retain new volunteers. At the same time, their development on open collaborative development platforms provides a nearly complete record of the community's interactions; this affords the opportunity to study naturally occurring language dynamics at scale and in a context with massive real-world impact. The present work takes a dynamical systems view of language to understand the ways in which communicative context and community membership shape the emergence and impact of language use-specifically, sentiment and expressions of gratitude. We then present evidence that these language dynamics shape newcomers' likelihood of returning, although the specific impacts of different community responses are crucially modulated by the context of the newcomer's first contact with the community.


Assuntos
Saúde Pública , Software , Comunicação , Humanos , Análise de Sistemas
6.
Methods Mol Biol ; 2301: 197-207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34415537

RESUMO

Just as in eukaryotes, high-throughput chromosome conformation capture (Hi-C) data have revealed nested organizations of bacterial chromosomes into overlapping interaction domains. In this chapter, we present a multiscale analysis framework aiming at capturing and quantifying these properties. These include both standard tools (e.g., contact laws) and novel ones such as an index that allows identifying loci involved in domain formation independently of the structuring scale at play. Our objective is twofold. On the one hand, we aim at providing a full, understandable Python/Jupyter-based code which can be used by both computer scientists and biologists with no advanced computational background. On the other hand, we discuss statistical issues inherent to Hi-C data analysis, focusing more particularly on how to properly assess the statistical significance of results. As a pedagogical example, we analyze data produced in Pseudomonas aeruginosa, a model pathogenetic bacterium. All files (codes and input data) can be found on a GitHub repository. We have also embedded the files into a Binder package so that the full analysis can be run on any machine through Internet.


Assuntos
Cromossomos Bacterianos , Cromossomos Bacterianos/genética , Conformação Molecular , Software
7.
Front Plant Sci ; 12: 747225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868130

RESUMO

Renewable fuels are needed to replace fossil fuels in the immediate future. Lignocellulosic bioenergy crops provide a renewable alternative that sequesters atmospheric carbon. To prevent displacement of food crops, it would be advantageous to grow biofuel crops on marginal lands. These lands will likely face more frequent and extreme drought conditions than conventional agricultural land, so it is crucial to see how proposed bioenergy crops fare under these conditions and how that may affect lignocellulosic biomass composition and saccharification properties. We found that while drought impacts the plant cell wall of Sorghum bicolor differently according to tissue and timing of drought induction, drought-induced cell wall compositional modifications are relatively minor and produce no negative effect on biomass conversion. This contrasts with the cell wall-related transcriptome, which had a varied range of highly variable genes (HVGs) within four cell wall-related GO categories, depending on the tissues surveyed and time of drought induction. Further, many HVGs had expression changes in which putative impacts were not seen in the physical cell wall or which were in opposition to their putative impacts. Interestingly, most pre-flowering drought-induced cell wall changes occurred in the leaf, with matrix and lignin compositional changes that did not persist after recovery from drought. Most measurable physical post-flowering cell wall changes occurred in the root, affecting mainly polysaccharide composition and cross-linking. This study couples transcriptomics to cell wall chemical analyses of a C4 grass experiencing progressive and differing drought stresses in the field. As such, we can analyze the cell wall-specific response to agriculturally relevant drought stresses on the transcriptomic level and see whether those changes translate to compositional or biomass conversion differences. Our results bolster the conclusion that drought stress does not substantially affect the cell wall composition of specific aerial and subterranean biomass nor impede enzymatic hydrolysis of leaf biomass, a positive result for biorefinery processes. Coupled with previously reported results on the root microbiome and rhizosphere and whole transcriptome analyses of this study, we can formulate and test hypotheses on individual gene candidates' function in mediating drought stress in the grass cell wall, as demonstrated in sorghum.

8.
Nat Commun ; 12(1): 5221, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471117

RESUMO

Bacteria of the genus Streptomyces are prolific producers of specialized metabolites, including antibiotics. The linear chromosome includes a central region harboring core genes, as well as extremities enriched in specialized metabolite biosynthetic gene clusters. Here, we show that chromosome structure in Streptomyces ambofaciens correlates with genetic compartmentalization during exponential phase. Conserved, large and highly transcribed genes form boundaries that segment the central part of the chromosome into domains, whereas the terminal ends tend to be transcriptionally quiescent compartments with different structural features. The onset of metabolic differentiation is accompanied by a rearrangement of chromosome architecture, from a rather 'open' to a 'closed' conformation, in which highly expressed specialized metabolite biosynthetic genes form new boundaries. Thus, our results indicate that the linear chromosome of S. ambofaciens is partitioned into structurally distinct entities, suggesting a link between chromosome folding, gene expression and genome evolution.


Assuntos
Antibacterianos/metabolismo , Cromossomos Bacterianos , Streptomyces/genética , Streptomyces/metabolismo , Estruturas Cromossômicas , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Família Multigênica , Transcriptoma
9.
Nat Commun ; 12(1): 3209, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050180

RESUMO

Recent studies have demonstrated that drought leads to dramatic, highly conserved shifts in the root microbiome. At present, the molecular mechanisms underlying these responses remain largely uncharacterized. Here we employ genome-resolved metagenomics and comparative genomics to demonstrate that carbohydrate and secondary metabolite transport functionalities are overrepresented within drought-enriched taxa. These data also reveal that bacterial iron transport and metabolism functionality is highly correlated with drought enrichment. Using time-series root RNA-Seq data, we demonstrate that iron homeostasis within the root is impacted by drought stress, and that loss of a plant phytosiderophore iron transporter impacts microbial community composition, leading to significant increases in the drought-enriched lineage, Actinobacteria. Finally, we show that exogenous application of iron disrupts the drought-induced enrichment of Actinobacteria, as well as their improvement in host phenotype during drought stress. Collectively, our findings implicate iron metabolism in the root microbiome's response to drought and may inform efforts to improve plant drought tolerance to increase food security.


Assuntos
Actinobacteria/metabolismo , Secas , Ferro/metabolismo , Microbiota/fisiologia , Sorghum/fisiologia , Aclimatação , Actinobacteria/genética , Produção Agrícola , Segurança Alimentar , Metagenômica/métodos , Raízes de Plantas/microbiologia , RNA-Seq , Rizosfera , Microbiologia do Solo , Sorghum/microbiologia , Estresse Fisiológico
10.
Proc Natl Acad Sci U S A ; 116(52): 27124-27132, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31806758

RESUMO

Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants' roots.

11.
BMC Bioinformatics ; 19(1): 313, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189838

RESUMO

BACKGROUND: Normalization is essential to ensure accurate analysis and proper interpretation of sequencing data, and chromosome conformation capture data such as Hi-C have particular challenges. Although several methods have been proposed, the most widely used type of normalization of Hi-C data usually casts estimation of unwanted effects as a matrix balancing problem, relying on the assumption that all genomic regions interact equally with each other. RESULTS: In order to explore the effect of copy-number variations on Hi-C data normalization, we first propose a simulation model that predict the effects of large copy-number changes on a diploid Hi-C contact map. We then show that the standard approaches relying on equal visibility fail to correct for unwanted effects in the presence of copy-number variations. We thus propose a simple extension to matrix balancing methods that model these effects. Our approach can either retain the copy-number variation effects (LOIC) or remove them (CAIC). We show that this leads to better downstream analysis of the three-dimensional organization of rearranged genomes. CONCLUSIONS: Taken together, our results highlight the importance of using dedicated methods for the analysis of Hi-C cancer data. Both CAIC and LOIC methods perform well on simulated and real Hi-C data sets, each fulfilling different needs.


Assuntos
Aberrações Cromossômicas , Mapeamento Cromossômico , Biologia Computacional/normas , Variações do Número de Cópias de DNA , Genoma Humano , Genômica/métodos , Neoplasias/genética , Humanos
12.
Int J Biostat ; 15(2)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29878883

RESUMO

The development of new ways to probe samples for the three-dimensional (3D) structure of DNA paves the way for in depth and systematic analyses of the genome architecture. 3C-like methods coupled with high-throughput sequencing can now assess physical interactions between pairs of loci in a genome-wide fashion, thus enabling the creation of genome-by-genome contact maps. The spreading of such protocols creates many new opportunities for methodological development: how can we infer 3D models from these contact maps? Can such models help us gain insights into biological processes? Several recent studies applied such protocols to P. falciparum (the deadliest of the five human malaria parasites), assessing its genome organization at different moments of its life cycle. With its small genomic size, fairly simple (yet changing) genomic organization during its lifecyle and strong correlation between chromatin folding and gene expression, this parasite is the ideal case study for applying and developing methods to infer 3D models and use them for downstream analysis. Here, I review a set of methods used to build and analyse three-dimensional models from contact maps data with a special highlight on P. falciparum's genome organization.

13.
Nat Commun ; 9(1): 1910, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29765020

RESUMO

The development of malaria parasites throughout their various life cycle stages is coordinated by changes in gene expression. We previously showed that the three-dimensional organization of the Plasmodium falciparum genome is strongly associated with gene expression during its replication cycle inside red blood cells. Here, we analyze genome organization in the P. falciparum and P. vivax transmission stages. Major changes occur in the localization and interactions of genes involved in pathogenesis and immune evasion, host cell invasion, sexual differentiation, and master regulation of gene expression. Furthermore, we observe reorganization of subtelomeric heterochromatin around genes involved in host cell remodeling. Depletion of heterochromatin protein 1 (PfHP1) resulted in loss of interactions between virulence genes, confirming that PfHP1 is essential for maintenance of the repressive center. Our results suggest that the three-dimensional genome structure of human malaria parasites is strongly connected with transcriptional activity of specific gene families throughout the life cycle.


Assuntos
Genoma de Protozoário , Malária Falciparum/parasitologia , Família Multigênica , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Anopheles/parasitologia , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Estágios do Ciclo de Vida , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo
14.
Genome Biol ; 16: 259, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26619908

RESUMO

HiC-Pro is an optimized and flexible pipeline for processing Hi-C data from raw reads to normalized contact maps. HiC-Pro maps reads, detects valid ligation products, performs quality controls and generates intra- and inter-chromosomal contact maps. It includes a fast implementation of the iterative correction method and is based on a memory-efficient data format for Hi-C contact maps. In addition, HiC-Pro can use phased genotype data to build allele-specific contact maps. We applied HiC-Pro to different Hi-C datasets, demonstrating its ability to easily process large data in a reasonable time. Source code and documentation are available at http://github.com/nservant/HiC-Pro .


Assuntos
Cromossomos/química , Genômica/métodos , Software , Algoritmos , Alelos , Linhagem Celular , Humanos
15.
Nucleic Acids Res ; 43(11): 5331-9, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25940625

RESUMO

Centromeres are essential for proper chromosome segregation. Despite extensive research, centromere locations in yeast genomes remain difficult to infer, and in most species they are still unknown. Recently, the chromatin conformation capture assay, Hi-C, has been re-purposed for diverse applications, including de novo genome assembly, deconvolution of metagenomic samples and inference of centromere locations. We describe a method, Centurion, that jointly infers the locations of all centromeres in a single genome from Hi-C data by exploiting the centromeres' tendency to cluster in three-dimensional space. We first demonstrate the accuracy of Centurion in identifying known centromere locations from high coverage Hi-C data of budding yeast and a human malaria parasite. We then use Centurion to infer centromere locations in 14 yeast species. Across all microbes that we consider, Centurion predicts 89% of centromeres within 5 kb of their known locations. We also demonstrate the robustness of the approach in datasets with low sequencing depth. Finally, we predict centromere coordinates for six yeast species that currently lack centromere annotations. These results show that Centurion can be used for centromere identification for diverse species of yeast and possibly other microorganisms.


Assuntos
Centrômero , Genoma Fúngico , Genômica/métodos , Leveduras/genética , Mapeamento Cromossômico , Enzimas de Restrição do DNA , Metagenômica , Plasmodium falciparum/genética , Saccharomyces cerevisiae/genética , Software
16.
BMC Genomics ; 16: 121, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25887659

RESUMO

BACKGROUND: Several recently developed experimental methods, each an extension of the chromatin conformation capture (3C) assay, have enabled the genome-wide profiling of chromatin contacts between pairs of genomic loci in 3D. Especially in complex eukaryotes, data generated by these methods, coupled with other genome-wide datasets, demonstrated that non-random chromatin folding correlates strongly with cellular processes such as gene expression and DNA replication. RESULTS: We describe a genome architecture assay, tethered multiple 3C (TM3C), that maps genome-wide chromatin contacts via a simple protocol of restriction enzyme digestion and religation of fragments upon agarose gel beads followed by paired-end sequencing. In addition to identifying contacts between pairs of loci, TM3C enables identification of contacts among more than two loci simultaneously. We use TM3C to assay the genome architectures of two human cell lines: KBM7, a near-haploid chronic leukemia cell line, and NHEK, a normal diploid human epidermal keratinocyte cell line. We confirm that the contact frequency maps produced by TM3C exhibit features characteristic of existing genome architecture datasets, including the expected scaling of contact probabilities with genomic distance, megabase scale chromosomal compartments and sub-megabase scale topological domains. We also confirm that TM3C captures several known cell type-specific contacts, ploidy shifts and translocations, such as Philadelphia chromosome formation (Ph+) in KBM7. We confirm a subset of the triple contacts involving the IGF2-H19 imprinting control region (ICR) using PCR analysis for KBM7 cells. Our genome-wide analysis of pairwise and triple contacts demonstrates their preference for linking open chromatin regions to each other and for linking regions with higher numbers of DNase hypersensitive sites (DHSs) to each other. For near-haploid KBM7 cells, we infer whole genome 3D models that exhibit clustering of small chromosomes with each other and large chromosomes with each other, consistent with previous studies of the genome architectures of other human cell lines. CONCLUSION: TM3C is a simple protocol for ascertaining genome architecture and can be used to identify simultaneous contacts among three or four loci. Application of TM3C to a near-haploid human cell line revealed large-scale features of chromosomal organization and multi-way chromatin contacts that preferentially link regions of open chromatin.


Assuntos
Cromatina/genética , Genoma Humano , Leucemia/genética , Linhagem Celular Tumoral , Humanos , Leucemia/patologia , Mapeamento por Restrição
17.
Bioessays ; 37(2): 182-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25394267

RESUMO

Plasmodium falciparum is the most deadly human malarial parasite, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the parasite actively regulates a large fraction of its genes throughout its replicative cycle inside human red blood cells and that epigenetics plays an important role in this precise gene regulation. Here, we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three-dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large-scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of malaria research.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Plasmodium falciparum/patogenicidade , Epigênese Genética/genética , Epigênese Genética/fisiologia , Malária/parasitologia , Virulência
18.
Bioinformatics ; 30(12): i26-33, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24931992

RESUMO

MOTIVATION: Recent technological advances allow the measurement, in a single Hi-C experiment, of the frequencies of physical contacts among pairs of genomic loci at a genome-wide scale. The next challenge is to infer, from the resulting DNA-DNA contact maps, accurate 3D models of how chromosomes fold and fit into the nucleus. Many existing inference methods rely on multidimensional scaling (MDS), in which the pairwise distances of the inferred model are optimized to resemble pairwise distances derived directly from the contact counts. These approaches, however, often optimize a heuristic objective function and require strong assumptions about the biophysics of DNA to transform interaction frequencies to spatial distance, and thereby may lead to incorrect structure reconstruction. METHODS: We propose a novel approach to infer a consensus 3D structure of a genome from Hi-C data. The method incorporates a statistical model of the contact counts, assuming that the counts between two loci follow a Poisson distribution whose intensity decreases with the physical distances between the loci. The method can automatically adjust the transfer function relating the spatial distance to the Poisson intensity and infer a genome structure that best explains the observed data. RESULTS: We compare two variants of our Poisson method, with or without optimization of the transfer function, to four different MDS-based algorithms-two metric MDS methods using different stress functions, a non-metric version of MDS and ChromSDE, a recently described, advanced MDS method-on a wide range of simulated datasets. We demonstrate that the Poisson models reconstruct better structures than all MDS-based methods, particularly at low coverage and high resolution, and we highlight the importance of optimizing the transfer function. On publicly available Hi-C data from mouse embryonic stem cells, we show that the Poisson methods lead to more reproducible structures than MDS-based methods when we use data generated using different restriction enzymes, and when we reconstruct structures at different resolutions. AVAILABILITY AND IMPLEMENTATION: A Python implementation of the proposed method is available at http://cbio.ensmp.fr/pastis.


Assuntos
Cromossomos/química , Genoma , Modelos Estatísticos , Algoritmos , Animais , DNA/química , Genômica/métodos , Camundongos , Modelos Moleculares , Conformação de Ácido Nucleico , Distribuição de Poisson
19.
Genome Res ; 24(6): 974-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24671853

RESUMO

The development of the human malaria parasite Plasmodium falciparum is controlled by coordinated changes in gene expression throughout its complex life cycle, but the corresponding regulatory mechanisms are incompletely understood. To study the relationship between genome architecture and gene regulation in Plasmodium, we assayed the genome architecture of P. falciparum at three time points during its erythrocytic (asexual) cycle. Using chromosome conformation capture coupled with next-generation sequencing technology (Hi-C), we obtained high-resolution chromosomal contact maps, which we then used to construct a consensus three-dimensional genome structure for each time point. We observed strong clustering of centromeres, telomeres, ribosomal DNA, and virulence genes, resulting in a complex architecture that cannot be explained by a simple volume exclusion model. Internal virulence gene clusters exhibit domain-like structures in contact maps, suggesting that they play an important role in the genome architecture. Midway during the erythrocytic cycle, at the highly transcriptionally active trophozoite stage, the genome adopts a more open chromatin structure with increased chromosomal intermingling. In addition, we observed reduced expression of genes located in spatial proximity to the repressive subtelomeric center, and colocalization of distinct groups of parasite-specific genes with coordinated expression profiles. Overall, our results are indicative of a strong association between the P. falciparum spatial genome organization and gene expression. Understanding the molecular processes involved in genome conformation dynamics could contribute to the discovery of novel antimalarial strategies.


Assuntos
Montagem e Desmontagem da Cromatina , Cromossomos/genética , Genoma de Protozoário , Modelos Genéticos , Plasmodium falciparum/genética , Regulação da Expressão Gênica no Desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Esquizontes/metabolismo , Trofozoítos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...