Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-477043

RESUMO

The recent emergence of highly mutated SARS-CoV-2 Omicron variant has debilitating effect on public health system of the affected countries worldwide. Currently India is facing third wave of COVID-19 pandemic and going through a severe crisis. Within short span of time, the variant has shown high transmissibility and capability of evading the immune response generated against natural infection and vaccination. The immune escape potential of Omicron is a serious concern and further needs to be explored. In the present study, we have assessed the IgG and neutralizing antibody (NAb) response in breakthrough individuals vaccinated with two doses ChAdOx1 nCoV-19 vaccine (n=25), breakthrough individuals vaccinated with two doses of BNT162b2 mRNA vaccine (n=8) and unvaccinated individuals (n=6). All these individuals were infected with Omicron variant. The IgG antibody activity in the sera of the ChAdOx1 nCoV-19 and BNT162b2 mRNA breakthrough individuals was comparable with S1-RBD, while it was lesser in BNT162b2 mRNA breakthrough individuals with N protein and inactivated whole antigen IgG ELISA. BNT162b2 mRNA breakthrough individuals showed moderate reduction in NAb GMTs compared to ChAdOx1 nCoV-19 against Alpha, Beta and Delta. However, 3-fold higher reduction was observed with omicron variant in BNT162b2 mRNA than ChAdOx1 nCoV-19. Apparently, Alpha variant was modestly resistant to the sera of unvaccinated individuals than Beta, Delta and Omicron. Our study demonstrated substantial immune response in the individuals infected with Omicron. The neutralizing antibodies could effectively neutralize the Omicron and other VOCs including the most prevalent Delta variant.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474750

RESUMO

Due to failure of virus isolation of Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, we infected Syrian hamsters and then passage into Vero CCL-81 cells. The Omicron sequences were studied to assess if hamster could incorporate any mutation to changes its susceptibility. L212C mutation, Tyrosine 69 deletion, and C25000T nucleotide change in spike gene and absence of V17I mutation in E gene was observed in sequences of hamster passage unlike human clinical specimen and Vero CCL-81 passages. No change was observed in the furin cleavage site in any of the specimen sequence which suggests usefulness of these isolates in future studies.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266954

RESUMO

The aim of this study was to identify the SARS-CoV-2 lineages circulating in the pediatric population of India during the second wave of the pandemic. Clinical and demographic details linked with the nasopharyngeal/oropharyngeal swabs (NPS/OPS) collected from SARS-CoV-2 cases (n=583) aged 0-18 year and tested positive by real-time RT-PCR were retrieved from March to June 2021.Symptoms were reported among 37.2% of patients and 14.8% reported to be hospitalized. The E gene CT value had significant statistical difference at the point of sample collection when compared to that observed in the sequencing laboratory. Out of these 512 sequences 372 were VOCs, 51 were VOIs. Most common lineages observed were Delta, followed by Kappa, Alpha and B.1.36, seen in 65.82%, 9.96%, 6.83% and 4.68%, respectively in the study population. Overall, it was observed that Delta strain was the leading cause of SARS-CoV-2 infection in Indian children during the second wave of the pandemic. We emphasize on the need of continuous genomic surveillance in SARS-CoV-2 infection even amongst children.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259439

RESUMO

BackgroundWe report the clinical efficacy against COVID-19 infection of BBV152, a whole-virion inactivated SARS-CoV-2 vaccine formulated with a Toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG). MethodsWe did a double-blind, randomised, multicentre, phase 3 clinical trial in 25 Indian hospitals to evaluate the efficacy, safety, and immunological lot consistency of BBV152. Healthy adults (age 18-98 years) randomised 1:1 using a computer-generated randomisation scheme received two intramuscular doses of vaccine or placebo administered four weeks apart. The primary outcome was laboratory-confirmed symptomatic COVID-19, occurring at least 14 days after the second dose. Secondary outcomes were efficacy in sub-groups for age (18-< 60 years and [≥] 60 years) and in participants with pre-existing stable medical conditions. We also evaluated safety, reactogenicity, and consistency of immune responses for three consecutive manufacturing lots. FindingsBetween November 16, 2020 and January 7, 2021 we recruited 25,798 participants who were randomised to BBV152 or placebo groups; 24,419 received two doses of BBV152 (n = 12,221) or placebo (n = 12,198). In a case-driven analysis, 130 cases of symptomatic COVID-19 were reported in 16,973 (0{middle dot}77%) participants with follow-up at least two weeks after the second vaccination; 24 occurred in the vaccine group and 106 in placebo recipients giving an overall vaccine efficacy of 77{middle dot}8% (95% CI: 65{middle dot}2-86{middle dot}4). Sixteen cases, one vaccinee and 15 placebo recipients, met the severe symptomatic COVID-19 case definition giving a vaccine efficacy of 93{middle dot}4% (57{middle dot}1-99{middle dot}8). Efficacy against asymptomatic COVID-19 was 63{middle dot}6% (29{middle dot}0-82{middle dot}4). BBV152 conferred 65{middle dot}2% (95% CI: 33{middle dot}1-83{middle dot}0) protection against the SARS-CoV-2 Variant of Concern, B.1.617.2 (Delta). BBV152 was well tolerated with no clinically or statistically significant differences in the distributions of solicited, unsolicited, or serious adverse events between vaccine and placebo groups. No cases of anaphylaxis or vaccine-related deaths were reported. InterpretationBBV152 was immunogenic and highly efficacious against symptomatic and asymptomatic COVID-19 variant associated disease, particularly against severe disease in adults. Vaccination was well tolerated with an overall incidence of adverse events observed over a median of 146 days that was lower than that observed with other COVID-19 vaccines. FundingThis work was supported and funded by Bharat Biotech International Limited and partly co-funded by the Indian Council of Medical Research. Clinicaltrials.gov: NCT04641481

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442760

RESUMO

BackgroundThe recent emergence of new SARS-CoV-2 lineage B.1.617 in India has been associated with a surge in the number of daily infections. This variant has combination of specific mutations L452R, E484Q and P681R reported to possibly enhance the transmissibility with likelihood of escaping the immunity. We investigated the viral load and pathogenic potential of B.1.617.1 in Syrian golden hamsters. MethodsTwo groups of Syrian golden hamsters (9 each) were inoculated intranasally with SARS CoV-2 isolates, B.1 (D614G) and B.1.617.1 respectively. The animals were monitored daily for the clinical signs and body weight. The necropsy of three hamsters each was performed on 3, 5- and 7-days post-infection (DPI). Throat swab (TS), nasal wash (NW) and organ samples (lungs, nasal turbinate, trachea) were collected and screened using SARS-CoV-2 specific Real-time RT-PCR. ResultsThe hamsters infected with B.1.617.1 demonstrated increased body weight loss compared to B.1 variant. The highest viral load was observed in nasal turbinate and lung specimens of animals infected with B.1.167.1 on 3 DPI. Neutralizing antibody (NAb) and IgG response in hamsters of both the groups were observed from 5 and 7 DPI respectively. However, higher neutralizing antibody titers were observed against B.1.167.1. Gross pathology showed pronounced lung lesions and hemorrhage with B.1.671 compared to B.1. ConclusionsB.1617.1 and B.1 variant varied greatly in their infectiousness, pathogenesis in hamster model. This study demonstrates higher pathogenicity in hamsters evident with reduced body weight, higher viral load in lungs and pronounced lung lesions as compared to B.1 variant. SummaryB.1.617.1 is the new SARS-CoV-2 lineage that emerged in India. Maximal body weight loss and higher viral load in hamsters infected with B.1.617.1. It caused pronounced lung lesions in hamsters compared to B.1 variant which demonstrates the pathogenic potential of B.1.617.1.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-445424

RESUMO

BackgroundConsidering the potential threat from emerging SARS-CoV-2 variants and the rising COVID-19 cases, SARS-CoV-2 genomic surveillance is ongoing in India. We report herewith the isolation of the P.2 variant (B.1.1.28.2) from international travelers and further its pathogenicity evaluation and comparison with D614G variant (B.1) in hamster model. MethodsVirus isolation was performed in Vero CCL81 cells and genomic characterization by next generation sequencing. The pathogenicity of the isolate was assessed in Syrian hamster model and compared with B.1 variant. ResultsB.1.1.28.2 variant was isolated from nasal/throat swabs of international travelers returned to India from United Kingdom and Brazil. The B.1.1.28.2 variant induced body weight loss, viral replication in the respiratory tract, lung lesions and caused severe lung pathology in infected Syrian hamster model in comparison, with B.1 variant infected hamsters. The sera from B.1.1.28.2 infected hamsters efficiently neutralized the D614G variant virus whereas 6-fold reduction in the neutralization was seen in case of D614G variant infected hamsters sera with the B.1.1.28.2 variant. ConclusionsB.1.1.28.2 lineage variant could be successfully isolated and characterization could be performed. Pathogenicity of the isolate was demonstrated in Syrian hamster model and in comparison, with B.1 variant was found more pathogenic. The findings of increased disease severity and neutralization reduction is of great concern and point towards the need for screening the vaccines for efficacy.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443968

RESUMO

Multiple SARS-CoV-2 variants have been emerged and created serious public health in the affected countries. The variant of Concern associated with high transmissibility, disease severity and escape mutations is threat to vaccination program across the globe. Travel has been important factor in spread of SARS-CoV-2 variants worldwide. India has also witnessed the dreadful effect of these SARS-CoV-2 variants. Here, we report the Isolation and characterization of SARS-CoV-2 VOC, 20H/501Y.V2 (B.1.351), from UAE travelers to India. The virus isolate would be useful to determine the efficacy of the currently available vaccines in India.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440932

RESUMO

As the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic expands, genomic epidemiology and whole genome sequencing are being constantly used to investigate its transmissions and evolution. In the backdrop of the global emergence of "variants of concern" (VOCs) during December 2020 and an upsurge in a state in the western part of India since January 2021, whole genome sequencing and analysis of spike protein mutations using sequence and structural approaches was undertaken to identify possible new variants and gauge the fitness of current circulating strains. Phylogenetic analysis revealed that the predominant clade in circulation was a distinct newly identified lineage B.1.617 possessing common signature mutations D111D, G142D, L452R, E484Q, D614G and P681R, in the spike protein including within the receptor binding domain (RBD). Of these, the mutations at residue positions 452, 484 and 681 have been reported in other globally circulating lineages. The structural analysis of RBD mutations L452R and E484Q along with P681R in the furin cleavage site, revealed that these may possibly result in increased ACE2 binding and rate of S1-S2 cleavage resulting in better transmissibility. The same two RBD mutations indicated decreased binding to select monoclonal antibodies (mAbs) and may affect their neutralization potential. Experimental validation against a wider panel of mAbs, sera from vaccinees and those that recovered from natural infection needs to be studied. The emergence of such local variants through the accumulation of convergent mutations during the COVID-19 second wave needs to be further investigated for their public health impact in the rest of the country and its possibility of becoming a VOC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...