Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(4): 1949-1955, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039331

RESUMO

The addition of lead to diphenyl diselenide in ethylenediamine (en) or pyridine (py) allowed for the observation of the solvento complexes, (en)Pb(SePh)2 or (py)2Pb(SePh)2, respectively. Performing this reaction in dimethyl sulfoxide and subsequent crystallization was found to afford Pb(SePh)2. Inductively coupled plasma optical emission spectroscopy revealed a 1:2 lead to selenium ratio for all three complexes. Nuclear magnetic resonance spectroscopy confirms that Pb(SePh)2 is readily solubilized by ethylenediamine, and electrospray ionization mass spectrometry supports the presence of Pb(SePh)2 moieties in solution. Single-crystal X-ray diffraction analysis of the pyridine adduct, (py)2Pb(SePh)2, revealed a seesaw molecular geometry featuring equatorial phenylselenolate ligands. Crystals of Pb(SePh)2 grown from dimethyl sulfoxide revealed one-dimensional polymeric chains of Pb(SePh)2. We believe that the lead(II) phenylselenolate complexes form via an oxidative addition reaction.

2.
Chem Commun (Camb) ; 54(65): 9055-9058, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30051125

RESUMO

We create precursors for PbTe, PbSe, SnTe, and SnSe by reacting Pb or Sn with diphenyl dichalcogenides in a variety of different solvents. We then deposit PbSexTe1-x thin films using these precursors and measure their thermoelectric properties. Introducing Na-dopants into the films allows the thermoelectric properties to be varied.

3.
ACS Appl Mater Interfaces ; 10(2): 2083-2092, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29235852

RESUMO

Room-temperature liquid metals (LMs) are attractive candidates for thermal interface materials (TIMs) because of their moderately high thermal conductivity and liquid nature, which allow them to conform well to mating surfaces with little thermal resistance. However, gallium-based LMs may be of concern due to the gallium-driven degradation of many metal microelectronic components. We present a three-component composite with LM, copper (Cu) microparticles, and a polymer matrix, as a cheaper, noncorrosive solution. The solid copper particles alloy with the gallium in the LM, in situ and at room temperature, immobilizing the LM and eliminating any corrosion issues of nearby components. Investigation of the structure-property-process relationship of the three-component composites reveals that the method and degree of additive blending dramatically alter the resulting thermal transport properties. In particular, microdispersion of any combination of the LM and Cu additives results in a large number of interfaces and a thermal conductivity below 2 W m-1 K-1. In contrast, a shorter blending procedure of premixed LM and Cu particle colloid into the polymer matrix yields a composite with polydispersed filler and effective intrinsic thermal conductivities of up to 17 W m-1 K-1 (effective thermal conductivity of up to 10 W m-1 K-1). The LM-Cu colloid alloying into CuGa2 provides a limited, but practical, time frame to cast the uncured composite into the desired shape, space, or void before the composite stiffens and cures with permanent characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA