Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(4): 103, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478122

RESUMO

CONTEXT: Monoamine oxidase B (MAO-B), an enzyme of significant relevance in the realm of neurodegenerative disorders, has garnered considerable attention as a potential target for therapeutic intervention. Natural compounds known as chalcones have shown potential as MAO-B inhibitors. In this particular study, we employed a multimodal computational method to evaluate the inhibitory effects of chalcones on MAO-B. METHODS: Molecular docking methods were used to study and assess the complicated binding interactions that occur between chalcones and MAO-B. This extensive analysis provided a valuable and deep understanding of possible binding methods as well as the key residues implicated in the inhibition process. Furthermore, the ADME investigation gave valuable insights into the pharmacokinetic properties of chalcones. This allowed them to be assessed in terms of drug-like attributes. The use of MD simulations has benefited in the research of ligand-protein interactions' dynamic behaviour and temporal stability. MM-PBSA calculations were also done to estimate the binding free energies and acquire a better knowledge and understanding of the binding affinity between chalcones and MAO-B. Our thorough method gives a thorough knowledge of chalcones' potential as MAO-B inhibitors, which will be useful for future experimental validation and drug development efforts in the context of neurodegenerative illnesses.


Assuntos
Chalconas , Monoaminoxidase , Monoaminoxidase/química , Monoaminoxidase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Chalconas/farmacologia , Chalconas/química , Relação Estrutura-Atividade
2.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798935

RESUMO

Inhibition of a disintegrin and metalloproteinase-17 (ADAM17), a metzincin, is proposed as a novel therapeutic strategy to suppress overproduction of the proinflammatory cytokine TNF-α in rheumatoid arthritis and inflammatory bowel disease. Existing ADAM17 inhibitors generate toxic metabolites in-vivo or haven't progressed in clinical trials. Previous studies suggest that ligands which bind to ADAM17 active site by interacting with the Zn ion and L-shaped hydrophobic S1'- and S3'-pockets and forming favorable hydrogen bonds could act as potential ADAM17 inhibitors. Here, we investigated whether the FDA-approved anti-bacterial drug ceftolozane, a cephalosporin containing aromatic groups and carboxyl groups as probable zinc binding groups (ZBGs), forms non-covalent interactions resulting in its binding in the active site of ADAM17. In this study, the density functional theory (DFT), molecular docking and molecular dynamics calculations with the catalytic chain of ADAM17 show that carboxyl group of ceftolozane acts as moderate ZBG, and its extended geometry forms hydrogen bonds and hydrophobic interactions resulting in a binding affinity comparable to the co-crystallized known ADAM17 inhibitor. The favorable binding interactions identified here suggest the potential of ceftolozane to modulate ADAM17 activity in inflammatory diseases. ADAM17 cleaves and releases epidermal growth factor (EGF) ligands from the cell surface. The shed EGF ligands then bind to the EGF receptors to drive embryonic development. Therefore, our findings also suggest that use of ceftolozane during pregnancy may inhibit ADAM17-mediated shedding of EGF and thus increase the risk of birth defects in humans.Communicated by Ramaswamy H. Sarma.

3.
Struct Chem ; : 1-17, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36274924

RESUMO

The global spread of the COVID-19 pandemic caused by the etiological agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), triggered researchers to identify and develop novel antiviral therapeutics. Herein, we report a new molecule 2-hydroxy-1,2-diphenylethanone N(4)-methyl-N(4)-phenyl thiosemicarbazone (BMPTSC), as a potential inhibitor of SARS-CoV-2. BMPTSC was synthesized, characterized by IR and NMR studies, and the structural parameters were analyzed computationally by B3LYP/cc-pVDZ method. Molecular docking studies were performed to get insights into the energetics and compatibility of BMPTSC against various SARS-CoV-2 drug targets. The best docking poses of target protein-BMPTSC complex structures were further subjected to molecular dynamics (MD) simulations. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations on the binding of BMPTSC with the target proteins viz. spike glycoprotein and ACE-2 protein showed energy values of -179.87 and -145.61 kJ/mol, respectively. Moreover, BMPTSC obeys Lipinski's rule, and further in silico assessment of oral bioavailability, bioactivity scores, ADME, drug-likeness, and medicinal chemistry friendliness suggests that this molecule is a promising candidate for the COVID-19 drug discovery process. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02033-8.

4.
Struct Chem ; 33(5): 1489-1502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645548

RESUMO

The continuing threat of COVID-19 and deaths need an urgent cost-effective pharmacological approach. Here, we examine the inhibitory activity of a group of dietary bioactive flavonoids against the human protease TMPRSS2, which plays a major role in SARS CoV-2 viral entry. After the molecular docking studies of a large number of flavonoids, four compounds with high binding scores were selected and studied in detail. The binding affinities of these four ligands, Amentoflavone, Narirutin, Eriocitrin, and Naringin, at the active site of the TMPRSS2 target, were investigated using MD simulations followed by MM-PBSA binding energy calculations. From the studies, a number of significant hydrophobic and hydrogen bonding interactions between the ligands and binding site amino residues of TMPRSS2 are identified which showcase their excellent inhibitory activity against TMPRSS2. Among these ligands, Amentoflavone and Narirutin showed MM-PBSA binding energy values of -155.57 and -139.71 kJ/mol, respectively. Our previous studies of the inhibitory activity of these compounds against the main protease of SARS-COV2 and the present study on TMPRSS2 strongly highlighted that Amentoflavone and Naringin can exhibit promising multi-target activity against SARS-CoV-2. Moreover, due to their wide availability, no side effects, and low cost, these compounds could be recommended as dietary supplements for COVID patients or for the development of SARS-CoV-2 treatments. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-01955-7.

5.
J Biomol Struct Dyn ; 40(15): 6755-6770, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33618628

RESUMO

Eventhough the development of vaccine against COVID-19 pandemic is progressing in different part of the world a well-defined treatment plan is not yet developed. Therefore, we investigate the inhibitory activity of a group of dietary bioactive flavonoids against SARS-CoV-2 main protease (Mpro), which are identified as one of the potential targets in the drug discovery process of COVID-19. After the initial virtual screening of a number of bioactive flavonoids, the binding affinity of three compounds - Naringin, Naringenin and Amentoflavone - at the active site of Mpro was investigated through MD Simulations, MM-PBSA and DFT Binding Energy calculations. From the MD trajectory analysis, Amentoflavone and Naringin showed consistent protein-ligand interactions with the aminoacid residues of the active site domains of Mpro. The excellent inhibitory activity of Amentoflavone and Naringin was established from its MM-PBSA binding energy values of -190.50 and -129.87 kJ/mol respectively. The MET165 residue of Mpro is identified as one of the key residue which contributed significantly to MM-PBSA binding energy through hydrophobic interactions. Furthermore, the DFT binding energy values of Amentoflavone (-182.92 kJ/mol) and Naringin (-160.67 kJ/mol) in active site molecular clusters with hydrogen bonds confirmed their potential inhibitory activity. These compounds are of high interest because of their wide availability, low cost, no side effects, and long history of use. We can prevent the severity of this disease for home care patients using these effective dietary supplements. We are hopeful that our results have implications for the development of prophylaxis of COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cisteína Endopeptidases/química , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...