Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142546

RESUMO

Green nanotechnology is currently a very crucial and indispensable technology for handling diverse problems regarding the living planet. The concoction of reactive oxygen species (ROS) and biologically synthesized silver nanoparticles (AgNPs) has opened new insights in cancer therapy. The current investigation caters to the concept of the involvement of a novel eco-friendly avenue to produce AgNPs employing the wild endolichenic fungus Talaromyces funiculosus. The synthesized Talaromyces funiculosus-AgNPs were evaluated with the aid of UV visible spectroscopy, dynamic light scattering (DLS), Fourier infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized Talaromyces funiculosus-AgNPs (TF-AgNPs) exhibited hemo-compatibility as evidenced by a hemolytic assay. Further, they were evaluated for their efficacy against foodborne pathogens Staphylococcus aureus, Streptococcus faecalis, Listeria innocua, and Micrococcus luteus and nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis bacterial strains. The synthesized TF-AgNPs displayed cytotoxicity in a dose-dependent manner against MDA-MB-231 breast carcinoma cells and eventually condensed the chromatin material observed through the Hoechst 33342 stain. Subsequent analysis using flow cytometry and fluorescence microscopy provided the inference of a possible role of intracellular ROS (OH-, O-, H2O2, and O2-) radicals in the destruction of mitochondria, DNA machinery, the nucleus, and overall damage of the cellular machinery of breast cancerous cells. The combined effect of predation by the cyclopoid copepod Mesocyclops aspericornis and TF-AgNPS for the larval management of dengue vectors were provided. A promising larval control was evident after the conjunction of both predatory organisms and bio-fabricated nanoparticles. Thus, this study provides a novel, cost-effective, extracellular approach of TF-AgNPs production with hemo-compatible, antioxidant, and antimicrobial efficacy against both human and foodborne pathogens with cytotoxicity (dose dependent) towards MDA-MB-231 breast carcinoma.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Nanopartículas Metálicas , Talaromyces , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Cromatina , Escherichia coli , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Prata/química , Prata/farmacologia
2.
Sci Rep ; 12(1): 4765, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35306526

RESUMO

Mosquito borne diseases are on the rise because of their fast spread worldwide and the lack of effective treatments. Here we are focusing on the development of a novel anti-malarial and virucidal agent with biocidal effects also on its vectors. We have synthesized a new quinoline (4,7-dichloroquinoline) derivative which showed significant larvicidal and pupicidal properties against a malarial and a dengue vector and a lethal toxicity ranging from 4.408 µM/mL (first instar larvae) to 7.958 µM/mL (pupal populations) for Anopheles stephensi and 5.016 µM/mL (larva 1) to 10.669 µM/mL (pupae) for Aedes aegypti. In-vitro antiplasmodial efficacy of 4,7-dichloroquinoline revealed a significant growth inhibition of both sensitive strains of Plasmodium falciparum with IC50 values of 6.7 nM (CQ-s) and 8.5 nM (CQ-r). Chloroquine IC50 values, as control, were 23 nM (CQ-s), and 27.5 nM (CQ-r). In vivo antiplasmodial studies with P. falciparum infected mice showed an effect of 4,7-dichloroquinoline compared to chloroquine. The quinoline compound showed significant activity against the viral pathogen serotype 2 (DENV-2). In vitro conditions and the purified quinoline exhibited insignificant toxicity on the host system up to 100 µM/mL. Overall, 4,7-dichloroquinoline could provide a good anti-vectorial and anti-malarial agent.


Assuntos
Antimaláricos , Dengue , Inseticidas , Malária , Nanopartículas Metálicas , Animais , Antimaláricos/farmacologia , Cloroquina/farmacologia , Dengue/tratamento farmacológico , Inseticidas/farmacologia , Larva , Malária/tratamento farmacológico , Camundongos , Mosquitos Vetores , Extratos Vegetais/farmacologia , Pupa
3.
Sci Rep ; 11(1): 19567, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599250

RESUMO

Mosquitoes are a great menace for humankind since they transmit pathogenic organisms causing Malaria, Dengue, Chikungunya, Elephantiasis and Japanese encephalitis. There is an urgent need to discover new and novel biological tools to mitigate mosquito-borne diseases. To develop bioinsecticides through newly developed nanotechnology is another option in the present research scenario. In this study we synthesize and characterize sardine fish scales with silver nitrate by adopting various instrumental techniques such as UV- and FTIR-spectroscopy, energy-dispersive X-ray (EDAX), X-ray diffraction analyses (XRD) and scanning electron microscopy (SEM). Toxicity bioassays were conducted with young developmental stages of mosquito vectors. Significant mortality appeared after different life stages of mosquito vectors (young larval and pupal instars were exposed to the nanomaterials). LC50 values were 13.261 ppm for young first instar larvae and 32.182 ppm for pupae. Feeding and predatory potential of G. affinis, before and after exposure to nanoparticles against mosquito larval (I & II) instars of the mosquitoes showed promising results in laboratory experiments. Feeding potential of mosquito fish without nanoparticle treatment was 79.7% and 70.55% for the first and second instar larval populations respectively. At the nanoparticle-exposed situation the predatory efficiency of mosquitofish was 94.15% and 84.3%, respectively. Antioxidant enzymes like (SOD), (CAT), and (LPO) were estimated in the gill region of sardine fish in control and experimental waters. A significant reduction of egg hatchability was evident after nanoparticle application. It became evident from this study that the nano-fabricated materials provide suitable tools to control the malaria vector Anopheles stephensi in the aquatic phase of its life cycle. This finding suggests an effective novel approach to mosquito control.


Assuntos
Escamas de Animais/química , Anopheles/efeitos dos fármacos , Peixes , Inseticidas/química , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Prata , Animais , Anopheles/parasitologia , Fenômenos Químicos , Concentração Inibidora 50 , Insetos Vetores/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Testes de Sensibilidade Parasitária , Prata/química , Análise Espectral
4.
Sci Rep ; 11(1): 8837, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893349

RESUMO

Microbes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV-vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Lawsonia (Planta)/química , Nanopartículas Metálicas/química , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Anti-Infecciosos/efeitos adversos , Antineoplásicos/efeitos adversos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Larva/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Análise Espectral/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...