Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cancers (Basel) ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37835434

RESUMO

Glioblastoma (GB) is the most aggressive primary malignant brain tumor and is associated with short survival. O-GlcNAcylation is an intracellular glycosylation that regulates protein function, enzymatic activity, protein stability, and subcellular localization. Aberrant O-GlcNAcylation is related to the tumorigenesis of different tumors, and mounting evidence supports O-GlcNAc transferase (OGT) as a potential therapeutic target. Here, we used two human GB cell lines alongside primary human astrocytes as a non-tumoral control to investigate the role of O-GlcNAcylation in cell proliferation, cell cycle, autophagy, and cell death. We observed that hyper O-GlcNAcylation promoted increased cellular proliferation, independent of alterations in the cell cycle, through the activation of autophagy. On the other hand, hypo O-GlcNAcylation inhibited autophagy, promoted cell death by apoptosis, and reduced cell proliferation. In addition, the decrease in O-GlcNAcylation sensitized GB cells to the chemotherapeutic temozolomide (TMZ) without affecting human astrocytes. Combined, these results indicated a role for O-GlcNAcylation in governing cell proliferation, autophagy, cell death, and TMZ response, thereby indicating possible therapeutic implications for treating GB. These findings pave the way for further research and the development of novel treatment approaches which may contribute to improved outcomes and increased survival rates for patients facing this challenging disease.

2.
Cells ; 9(7)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645832

RESUMO

Chagas disease discovered more than a century ago remains an incurable disease. The objective of this work was to investigate the therapeutic potential of cardiomyocytes derived from mouse embryonic stem cells (CM-mESC) in a model of chronic Chagasic cardiomyopathy (CCC). Mouse embryonic stem cells (mESC) were characterized, transduced with luciferase, and submitted to cardiac differentiation. CM-mESC were labeled with superparamagnetic iron oxide particles. To induce CCC, mice were infected with Brazil strain trypomastigotes. At 150 days post-infection (dpi), infected animals were treated with CM-mESC or PBS. Cells were detected by magnetic resonance imaging (MRI) and bioluminescence. Cardiac function was evaluated by MRI and electrocardiogram at 150 and 196 dpi. CCC mice showed significant differences in MRI and ECG parameters compared to non-infected mice. However, no differences were observed in contractile and electrical parameters between cell and PBS injected groups, 45 days after cell transplantation. Cells were detected 24 h after transplantation by MRI. CM-mESC bioluminescence tracking demonstrated over 90% decrease in signal 8 days after treatment. Nevertheless, the Infected + CM-mESC group showed a significant reduction in the percentage of collagen fibers when compared to the Infected + PBS group. In conclusion, CM-mESC therapy was not effective in reversing cardiac functional changes induced by Chagas disease despite some improvement in myocardial fibrosis.


Assuntos
Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Miócitos Cardíacos/fisiologia , Animais , Cardiomiopatias/diagnóstico por imagem , Doença de Chagas/diagnóstico por imagem , Doença de Chagas/metabolismo , Doença de Chagas/terapia , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Citometria de Fluxo , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Miócitos Cardíacos/metabolismo
3.
Sci Rep ; 9(1): 8628, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197200

RESUMO

CD43 (leukosialin) is a large sialoglycoprotein abundantly expressed on the surface of most cells from the hematopoietic lineage. CD43 is directly involved in the contact between cells participating in a series of events such as signaling, adherence and host parasite interactions. In this study we examined the role of CD43 in the immune response against Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, a potential life-threatening illness endemic in 21 Latin American countries according to the WHO. The acute stage of infection is marked by intense parasitemia and cardiac tissue parasitism, resulting in the recruitment of inflammatory cells and acute damage to the heart tissue. We show here that CD43-/- mice were more resistant to infection due to increased cytotoxicity of antigen specific CD8+ T cells and reduced inflammatory infiltration in the cardiac tissue, both contributing to lower cardiomyocyte damage. In addition, we demonstrate that the induction of acute myocarditis involves the engagement of CD43 cytoplasmic tripeptide sequence KRR to ezrin-radixin-moiesin cytoskeletal proteins. Together, our results show the participation of CD43 in different events involved in the pathogenesis of T. cruzi infection, contributing to a better overall understanding of the mechanisms underlying the pathogenesis of acute chagasic cardiomyopathy.


Assuntos
Doença de Chagas/metabolismo , Inflamação/patologia , Leucossialina/metabolismo , Miocárdio/patologia , Animais , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Doença de Chagas/imunologia , Doença de Chagas/patologia , Citotoxicidade Imunológica , Suscetibilidade a Doenças , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Miocardite/imunologia , Miocardite/parasitologia , Miocardite/patologia , Parasitemia/imunologia , Fagócitos/patologia , Baço/imunologia , Análise de Sobrevida
4.
Brain Res ; 1712: 73-81, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735638

RESUMO

Amyotrophic lateral sclerosis (ALS) is a chronic degenerative disease that mainly affects motor neurons, leading to progressive paralysis and death. Recently, cell therapy has emerged as a therapeutic alternative for several neurological diseases, including ALS, and bone-marrow cells are one of the major cell sources. Considering the importance of pre-clinical trials to determine the best therapeutic protocol and the hope of translating this protocol to the clinical setting, we tested bone-marrow mononuclear cell (BMMC) therapy administered by different routes in the SOD1G93A model of ALS. BMMCs were isolated from non-transgenic, age matched animals and administered intravenously (IV), intramuscularly (IM), and intravenously and intramuscular concomitantly (IV + IM). BMMC therapy had no significant beneficial effects when injected IV or IM, but delayed disease progression when these two routes were used concomitantly. BMMC IV + IM treatment reduced the number of microglia cells in the spinal cord and partially protected of neuromuscular-junction innervation, but had no effect in preventing motor-neuron loss. This study showed that injection of BMMC IV + IM had better results when compared to each route in isolation, highlighting the importance of targeting multiple anatomical regions in the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Administração Intravenosa/métodos , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Medula Óssea/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Injeções Intramusculares/métodos , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
5.
Front Med (Lausanne) ; 5: 25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594116

RESUMO

Zika virus (ZIKV) disease has become a global health emergency with devastating effects on public health. Recent evidences implicate the virus as an emergent neuropathological agent promoting serious pathologies of the human nervous system, that include destructive and malformation consequences such as development of ocular and fetal brain lesions, microcephaly in neonates, and Guillain-Barré syndrome (GBS) in adults. These neurological disorders of both central and peripheral nervous systems are thought to be associated to the neurotropic properties of the virus that has ability to infect neural stem cells as well as peripheral neurons, a hallmark of its pathogenicity. The presence of autoantibodies against gangliosides plays a pivotal role in the etiogenesis of GBS and a variety of neurological disorders. Gangliosides are a class of galactose-containing cerebrosides mainly expressed in nervous system tissues playing a critical role in the physiology of neural cells and neurogenesis. Herein, our findings indicate that patients at acute phase of ZIKV infection without any neurological signs show increased levels of IgG autoantibody against GD3 gangliosides, a class of glycolipid found to be highly expressed in neural stem cell acting in the maintenance of their self-renewal cellular capacity. It is possible that a pathological threshold of these antibodies is only acquired in secondary or subsequent infections. In the light of these evidences, we propose that the target of GD3 by autoimmune responses may possibly has an effect in the neuropathy and neurogenesis disorder seen during ZIKV infection.

6.
J Bioenerg Biomembr ; 50(3): 175-187, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29322286

RESUMO

A number of cancer types have shown an increased prevalence and a higher mortality rate in patients with hyperglycemic associated pathologies. Although the correlation between diabetes and cancer incidence has been increasingly reported, the underlying molecular mechanisms beyond this association are not yet fully understood. Recent studies have suggested that high glucose levels support tumor progression through multiple mechanisms that are hallmarks of cancer, including cell proliferation, resistance to apoptosis, increased cell migration and invasiveness, epigenetic regulation (hyperglycemic memory), resistance to chemotherapy and altered metabolism. Most of the above occur because hyperglycemia through hexosamine biosynthetic pathway leads to aberrant O-GlcNAcylation of many intracellular proteins that are involved in those mechanisms. Deregulated O-GlcNAcylation is emerging as a general feature of cancer. Despite strong evidence suggesting that aberrant O-GlcNAcylation is or may be involved in the acquisition of all cancer hallmarks, it remains out of the list of the next generation of emerging hallmarks. Here, we discuss some of the current understanding on how hyperglycemia affects cancer cell biology and how aberrant O-GlcNAcylation stands in this context.


Assuntos
Acetilglucosamina/metabolismo , Hiperglicemia/complicações , Neoplasias/metabolismo , Animais , Progressão da Doença , Glicosilação , Humanos
7.
J Biol Chem ; 293(6): 1957-1975, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284679

RESUMO

Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-ß peptide (AßOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AßOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AßO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AßOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/citologia , Células-Tronco Mesenquimais/citologia , Neurônios/metabolismo , Estresse Oxidativo , Sinapses/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Técnicas de Cocultura , Vesículas Extracelulares/genética , Hipocampo/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Front Oncol ; 5: 138, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161361

RESUMO

Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.

9.
Glycobiology ; 24(5): 458-68, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24578376

RESUMO

Induced pluripotent stem (iPS) cells are somatic cells that have been reprogrammed to a pluripotent state via the introduction of defined transcription factors. Although iPS is a potentially valuable resource for regenerative medicine and drug development, several issues regarding their pluripotency, differentiation propensity and potential for tumorigenesis remain to be elucidated. Analysis of cell surface glycans has arisen as an interesting tool for the characterization of iPS. An appropriate characterization of glycan surface molecules of human embryonic stem (hES) cells and iPS cells might generate crucial data to highlight their role in the acquisition and maintenance of pluripotency. In this study, we characterized the surface glycans of iPS generated from menstrual blood-derived mesenchymal cells (iPS-MBMC). We demonstrated that, upon spontaneous differentiation, iPS-MBMC present high amounts of terminal ß-galactopyranoside residues, pointing to an important role of terminal-linked sialic acids in pluripotency maintenance. The removal of sialic acids by neuraminidase induces iPS-MBMC and hES cells differentiation, prompting an ectoderm commitment. Exposed ß-galactopyranose residues might be recognized by carbohydrate-binding molecules found on the cell surface, which could modulate intercellular or intracellular interactions. Together, our results point for the first time to the involvement of the presence of terminal sialic acid in the maintenance of embryonic stem cell pluripotency and, therefore, the modulation of sialic acid biosynthesis emerges as a mechanism that may govern stem cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Ácido N-Acetilneuramínico/metabolismo
10.
Cell Physiol Biochem ; 32(3): 699-718, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24080824

RESUMO

BACKGROUND/AIMS: Diabetic nephropathy is one of the main causes of end-stage renal disease. The present study investigated the effect of mononuclear cell (MC) therapy in rats subjected to diabetic nephropathy. METHODS: Male Wistar rats were divided into control (CTRL), diabetic (DM), CTRL+MC and DM+MC groups. Diabetes was induced by a single injection of streptozotocin (45 mg/kg, i.p.) and, 4 weeks later, 2×10(7) MCs were injected via the jugular vein. RESULTS: The rats in the DM and DM+MC groups showed increased glycemia, glomerular filtration rate and glomerular tuff area versus control groups. The glomerular filtration rate and glomerular tuff area were normalized in the DM+MC group. No alterations were observed in the fractional excretion of electrolytes and proteinuria between the DM and DM+MC groups. TGF-ß1 protein levels in the DM group were significantly increased versus control animals and normalized in the DM+MC group. An increase in ED1(+)/arginase I(+) macrophages and IL-10 renal expression was observed in the DM+MC group versus DM group. CONCLUSIONS: Bone marrow-derived MC therapy was able to prevent glomerular alterations and TGF-ß1 protein overexpression and modulated glomerular arginase I(+) macrophage infiltration in rats subjected to early diabetic nephropathy.


Assuntos
Células da Medula Óssea/citologia , Diabetes Mellitus Experimental/cirurgia , Nefropatias Diabéticas/cirurgia , Leucócitos Mononucleares/transplante , Animais , Arginase/metabolismo , Glicemia/análise , Peso Corporal , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Ectodisplasinas/metabolismo , Taxa de Filtração Glomerular , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Rim/patologia , Leucócitos Mononucleares/citologia , Macrófagos/metabolismo , Masculino , Proteinúria , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Brain Res ; 1522: 1-11, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23721927

RESUMO

Global cerebral ischemia (GCI) results in death of the pyramidal neurons in the CA1 layer of the hippocampus. In this study we used the four-vessel occlusion (4VO) model of GCI to investigate a potential neuroprotective role of bone-marrow mononuclear cells (BMMCs) transplantation. BMMCs (3×10(7)) were injected through the carotid artery, 1 or 3 days after ischemia (DAI), and the number of cells undergoing degeneration was investigated in brains at 7 DAI. A significant decrease in the number of dying cells was observed in the treated group, compared to animals treated with saline. Biodistribution of the injected cells (1 or 3 DAI) was investigated by (99m)Technetium labeling of the BMMCs and subsequent image analysis 2h after transplantation. In addition, the presence of CellTrace(™)-labeled BMMCs was investigated in tissue sections of the hippocampal area of these transplanted animals. BMMCs treatment significantly reduced the number of FJ-C positive cells in the hippocampal CA1 layer at 7 DAI. We also observed a decrease in the number of activated microglia/macrophage (ED1-positive cells) in the BMMCs-treated group compared with the untreated group. Our data show that BMMCs are able to modulate the microglial response and reduce neurodegeneration in the CA1 layer.


Assuntos
Transplante de Medula Óssea/métodos , Isquemia Encefálica/patologia , Região CA1 Hipocampal/patologia , Leucócitos Mononucleares/transplante , Degeneração Neural/patologia , Animais , Células da Medula Óssea , Masculino , Ratos , Ratos Wistar
12.
Stem Cell Res ; 9(2): 143-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22742973

RESUMO

Bone marrow mesenchymal stem cells (MSC) have been tested and proven effective in some neurodegenerative diseases, but their tracking after transplantation may be challenging. Our group has previously demonstrated the feasibility and biosafety of rat MSC labeling with iron oxide superparamagnetic nanoparticles (SPION). In this study, we investigated the therapeutic potential of SPION-labeled MSC in a rat model of Huntington's disease, a genetic degenerative disease with characteristic deletion of striatal GABAergic neurons. MSC labeled with SPION were injected into the striatum 1h after quinolinic acid injection. FJ-C analysis demonstrated that MSC transplantation significantly decreased the number of degenerating neurons in the damaged striatum 7 days after lesion. In this period, MSC transplantation enhanced the striatal expression of FGF-2 but did not affect subventricular zone proliferation, as demonstrated by Ki67 proliferation assay. In addition, MSC transplantation significantly reduced the ventriculomegaly in the lesioned brain. MRI and histological techniques detected the presence of the SPION-labeled cells at the lesion site. SPION-labeled MSC produced magnetic resonance imaging (MRI) signals that were visible for at least 60 days after transplantation. Our data highlight the potential of adult MSC to reduce brain damage under neurodegenerative diseases and indicate the use of nanoparticles in cell tracking, supporting their potential as valuable tools for cell therapy.


Assuntos
Dextranos/uso terapêutico , Doença de Huntington/terapia , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/uso terapêutico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ferrocianetos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Doença de Huntington/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Neostriado/efeitos dos fármacos , Neostriado/patologia , Degeneração Neural/patologia , Degeneração Neural/terapia , Ratos , Ratos Wistar , Coloração e Rotulagem
13.
Stem Cell Res ; 9(1): 1-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22445868

RESUMO

Intravascular delivery of cells has been increasingly used in stroke models and clinical trials. We compared the biodistribution and therapeutic effects of bone marrow mononuclear cells (BMMCs) delivered by intra-arterial (IA) or intravenous (IV) injection after cortical ischemia. For the biodistribution analyses, BMMCs were labeled with (99m)Technetium ((99m)Tc). At 2 h, gamma-well counting of the brain and of the other organs evaluated did not show differences between the non-ischemic and ischemic groups or between injection routes, and the organs with the highest uptake were the liver and lungs, with low uptake in the brain. At 24 h, the liver maintained the highest activity, and a marked decrease was seen in pulmonary uptake in all groups. At this time point, although the activity in the brain remained low, the lesioned hemisphere showed greater homing than the contralateral hemisphere, for both the IV and IA ischemic groups. Histological analysis by CellTrace labeling indicated similar homing between both routes in the peri-infarct region 24 h after transplantation and functional recovery was observed in both groups up to 11 weeks after the lesion. In conclusion, transplantation of BMMCs by IA or IV routes may lead to similar brain homing and therapeutic efficacy after experimental stroke.


Assuntos
Transplante de Medula Óssea/métodos , Isquemia Encefálica/terapia , Injeções Intra-Arteriais , Injeções Intravenosas , Monócitos/citologia , Animais , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual , Resultado do Tratamento
14.
Brain Res ; 1306: 149-58, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19799881

RESUMO

The beneficial effect of treatment with bone marrow mononuclear cells (BMMCs) was evaluated in different therapeutic windows in a rat model of focal ischemia induced by thermocoagulation of the blood vessels in the left motor, somestesic, and sensorimotor cortices. We also compared the therapeutic benefits between BMMCs and bone marrow-derived mesenchymal stem cells (MSCs). BMMCs and MSCs were obtained from donor rats and injected into the jugular vein after ischemia. BMMCs-treated animals received approximately 3x10(7) cells at post-ischemic days (PIDs) 1, 7, 14, or 30. MSCs-treated animals received approximately 3x10(6) cells at PIDs 1 and 30. Control animals received only the vehicle. The animals were then evaluated for functional sensorimotor recovery weekly with behavioral tests (cylinder test and adhesive test). Significant recovery of sensorimotor function was only observed in the cylinder test in animals treated with BMMCs at PIDs 1 and 7. Similar effects were also observed in the animals treated with MSCs 1 day after ischemia, but not in animals treated with MSCs 30 days after ischemia. Significant decrease in glial scarring did not seem to be a mechanism of action of BMMCs, since treatment with BMMCs did not change the level of expression of GFAP, indicating no significant change in the astrocytic scar in the periphery of the ischemic lesion. These results suggest that BMMCs might be an efficient treatment protocol for stroke only in the acute/subacute phase of the disease, and its efficiency in inducing functional recovery is similar to that of MSCs.


Assuntos
Transplante de Medula Óssea/métodos , Isquemia Encefálica/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Células Cultivadas , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Immunoblotting , Masculino , Atividade Motora , Neuroglia/metabolismo , Neuroglia/patologia , Testes Neuropsicológicos , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo , Percepção do Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...