Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Catal Letters ; 153(11): 3405-3422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799191

RESUMO

In this article we shed light on newly emerging perspectives to characterize and understand the interplay of diffusive mass transport and surface catalytic processes in pores of gas phase metal catalysts. As a case study, nanoporous gold, as an interesting example exhibiting a well-defined pore structure and a high activity for total and partial oxidation reactions is considered. PFG NMR (pulsed field gradient nuclear magnetic resonance) measurements allowed here for a quantitative evaluation of gas diffusivities within the material. STEM (scanning transmission electron microscopy) tomography furthermore provided additional insight into the structural details of the pore system, helping to judge which of its features are most decisive for slowing down mass transport. Based on the quantitative knowledge about the diffusion coefficients inside a porous catalyst, it becomes possible to disentangle mass transport contributions form the measured reaction kinetics and to determine the kinetic rate constant of the underlying catalytic surface reaction. In addition, predictions can be made for an improved effectiveness of the catalyst, i.e., optimized conversion rates. This approach will be discussed at the example of low-temperature CO oxidation, efficiently catalysed by npAu at 30 °C. The case study shall reveal that novel porous materials exhibiting well-defined micro- and mesoscopic features and sufficient catalytic activity, in combination with modern techniques to evaluate diffusive transport, offer interesting new opportunities for an integral understanding of catalytic processes.

2.
Chem Commun (Camb) ; 58(88): 12305-12308, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36250295

RESUMO

The separation of xylene isomers still remains an industrially challenging task. Here, porous purine-based metal-organic frameworks (MOFs) have been synthesized and studied for their potential in xylene separations. In particular, Zn(purine)I showed excellent para-xylene/ortho-xylene separation capability with a diffusion selectivity of 6 and high equilibrium adsorption selectivity as indicated by coadsorption experiments. This high selectivity is attributed to the shape and size of the channel aperture within the rigid framework of Zn(purine)I.


Assuntos
Estruturas Metalorgânicas , Xilenos , Adsorção , Isomerismo , Purinas
3.
Phys Chem Chem Phys ; 24(17): 10069-10078, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416222

RESUMO

Pulsed field gradient (PFG) NMR in combination with quasielastic neutron scattering (QENS) was used to investigate self-diffusion of water and acetone in Nafion membranes with and without immobilized vanillic acid (VA). Complementary characterization of these membranes was performed by small angle X-ray scattering (SAXS) and NMR relaxometry. This study was motivated by the recent data showing that an organic acid, such as VA, in Nafion can preserve its catalytic activity in the presence of water even at high intra-polymer water concentrations corresponding up to 100% ambient relative humidity. However, there is currently no clear understanding of how immobilized organic acid molecules influence the microscopic transport properties and related structural properties of Nafion. Microscopic diffusion data measured by PFG NMR and QENS are compared for Nafion with and without VA. For displacements smaller than the micrometer-sized domains previously reported for Nafion, the VA addition was not observed to lead to any significant changes in the water and/or acetone self-diffusivity measured by each technique inside Nafion. However, the reported PFG NMR data present evidence of a different influence of acetone concentration in the membranes with and without VA on the water permeance of the interfaces between neighboring micrometer-sized domains. The reported diffusion data are correlated with the results of SAXS structural characterization and NMR relaxation data for water and acetone.


Assuntos
Acetona , Ácido Vanílico , Polímeros de Fluorcarboneto , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
4.
J Phys Chem B ; 124(40): 8943-8950, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-32931279

RESUMO

Pulsed field gradient (PFG) NMR at high field was utilized to directly observe a transition between two different diffusion regimes in a Nafion 117 membrane loaded with water and acetone. Although water self-diffusivity at small water loadings was observed to be diffusion time-independent in the limit of small and large diffusion times, it showed a significant decrease with increasing diffusion time at intermediate times corresponding to root mean square displacements on the order of several microns. Under our experimental conditions, no self-diffusivity dependence on diffusion time was found for water at large water loadings and for acetone at all studied acetone loadings. The diffusion time-dependent self-diffusivity at small water concentration is explained by the existence of finite domains of interconnected water channels with sizes in the range of several microns that form in Nafion in the presence of acetone. The domain sizes and permeance of transport barriers separating adjacent domains are estimated based on the measured PFG NMR data. At large water concentrations, the water channels form a fully interconnected network, resulting in time-independent self-diffusivity. The absence of such a percolation-like transition with increasing molecular concentration for acetone is attributed to a difference in the regions available for water and acetone diffusion in Nafion. The diffusion data are correlated with and supported by structural data obtained using small-angle X-ray and neutron scattering techniques. These techniques reveal distinct water channels with radial dimensions in the nanometer range increasing upon water addition, while acetone appears to be in an interfacial perfluoroether region, reducing the size of the radial channel dimension.

5.
J Memb Sci ; 5932020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32863548

RESUMO

Self-diffusivities of ethane were measured by multinuclear pulsed field gradient (PFG) NMR inside zeolitic imidazolate framework-11 (ZIF-11) crystals dispersed in several selected polymers to form mixed-matrix membranes (MMMs). These diffusivities were compared with the corresponding intracrystalline self-diffusivities in ZIF-11 crystal beds. It was observed that the confinement of ZIF-11 crystals in ZIF-11 / Torlon MMM can lead to a decrease in the ethane intracrystalline self-diffusivity. Such diffusivity decrease was observed at different temperatures used in this work. PFG NMR measurements of the temperature dependence of the intracrystalline self-diffusivity of ethylene in the same ZIF-11 / Torlon MMM revealed similar diffusivity decrease as well as an increase in the diffusion activation energy in comparison to those in unconfined ZIF-11 crystals in a crystal bed. These observations for ethane and ethylene were attributed to the reduction of the flexibility of the ZIF-11 framework due to the confinement in Torlon leading to a smaller effective aperture size of ZIF-11 crystals. Surprisingly, the intra-ZIF diffusion selectivity for ethane and ethylene was not changed appreciably by the confinement of ZIF-11 crystals in Torlon in comparison to the selectivity in a bed of ZIF-11 crystals. No ZIF-11 confinement effects leading to a reduction in the intracrystalline self-diffusivity of ethane and ethylene were observed for the other two studied MMM systems: ZIF-11 / Matrimid and ZIF-11 / 6FDA-DAM. The absence of the confinement effect in the latter MMMs can be related to the lower values of the polymer bulk modulus in these MMMs in comparison to that in ZIF-11 / Torlon MMM. In addition, there may be a contribution from possible differences in the ZIF-11/polymer adhesion in different MMM types.

6.
Chem Commun (Camb) ; 55(39): 5619-5622, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31025663

RESUMO

Self-assembly of brominated triphenylamine bis-urea macrocycles affords robust porous materials. Urea hydrogen bonds organize these building blocks into 1-dimensional columns, which pack via halogen-aryl interactions. The crystals are stable when emptied, present two distinct absorption sites for Xe with restricted Xe diffusion, and exhibit single-crystal-to-single-crystal guest exchange.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32831626

RESUMO

Self-diffusion of pure gases including carbon dioxide, methane, ethylene, ethane, and xenon as well as selected two-component mixtures was studied in hybrid zeolitic imidazolate framework-7-8 (ZIF-7-8) crystals using pulsed field gradient (PFG) NMR. This material was formed by mixing 2-methylimidazolate (ZIF-8 linker) and bulkier benzimidazolate (ZIF-7 linker) in the same framework. The intracrystalline diffusion data measured in mixed-linker ZIF-7-8 was compared with the corresponding data in the parent ZIF-8 material. It was found that under the same or comparable experimental conditions the intracrystalline gas diffusion was always slower in ZIF-7-8 than in ZIF-8. This observation is consistent with the expected lower pore aperture size in ZIF-7-8 than in ZIF-8. At the same time, the ethane/ethylene diffusion selectivity was found to be similar in both ZIFs. It was also observed that for the pure studied gases larger than carbon dioxide the diffusivity ratios in ZIF-8 and ZIF-7-8 do not increase with increasing gas size at all loading pressures used. All these data are attributed to greater framework flexibility effects in ZIF-7-8 than ZIF-8. Such effects manifest themselves in a distortion and/or increase in the aperture size in the presence of large sorbates due to linker flexibility.

9.
Phys Chem Chem Phys ; 20(37): 23967-23975, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30211405

RESUMO

Pulsed field gradient (PFG) NMR was used in combination with single crystal IR microscopy (IRM) to study diffusion of ethane inside crystals of a mixed linker zeolitic imidazolate framework (ZIF) of the type ZIF-7-8 under comparable experimental conditions. These crystals contain 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker). It was observed that the PFG NMR attenuation curves measured for ethane in ZIF-7-8 exhibit deviations from the monoexponential behaviour, thereby indicating that the ethane self-diffusivity in different crystals of a crystal bed can be different. Measurements of the ethane uptake curves performed by IRM under the same conditions in different ZIF-7-8 crystals of the bed yield different transport diffusivities thus confirming that the rate of ethane diffusion is different in different ZIF-7-8 crystals. The IRM observation that the fractions of ZIF-8 and ZIF-7 linkers are different in different ZIF-7-8 crystals allowed attributing the observed heterogeneity in diffusivities to the heterogeneity in the linker fraction. The quantitative comparison of the average ethane self-diffusivities measured by PFG NMR in ZIF-7-8 with the corresponding data on corrected diffusivities from IRM measurements revealed a good agreement between the results obtained by the two techniques. In agreement with the expectation of smaller aperture sizes in ZIF-7-8 than in ZIF-8, the average ethane self-diffusivities in ZIF-7-8 were found to be significantly lower than the corresponding self-diffusivities in ZIF-8.

10.
Langmuir ; 33(20): 5006-5014, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28475342

RESUMO

NMR techniques have been widely used to infer molecular structure, including surfactant aggregation. A combination of optical spectroscopy, proton NMR spectroscopy, and pulsed field gradient NMR (PFG NMR) is used to study the adsorption number for sodium dodecyl sulfate (SDS) with single-wall carbon nanotubes (SWCNTs). Distinct transitions in the NMR chemical shift of SDS are observed in the presence of SWCNTs. These transitions demonstrate that micelle formation is delayed by SWCNTs due to the adsorption of SDS on the nanotube surface. Once the nanotube surface is saturated, the free SDS concentration increases until micelle formation is observed. Therefore, the adsorption number of SDS on SWCNTs can be determined by the changes to the apparent critical micelle concentration (CMC). PFG NMR found that SDS remains strongly bound onto the nanotube. Quantitative analysis of the diffusivity of SDS allowed calculation of the adsorption number of strongly bound SDS on SWCNTs. The adsorption numbers from these techniques give the same values within experimental error, indicating that a significant fraction of the SDS interacting with nanotubes remains strongly bound for as long as 0.5 s, which is the maximum diffusion time used in the PFG NMR measurements.

11.
Chem Commun (Camb) ; 51(69): 13346-9, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26169382

RESUMO

High field NMR diffusometry reveals single-file diffusion of CO/CH4 mixture in dipeptide nanochannels with a coincident mobility for CO and CH4. In contrast to the relationship commonly observed for normal diffusion, this mixture mobility is only slightly smaller than that of pure CO which diffuses much faster than pure CH4.

12.
Anal Chem ; 86(4): 2200-4, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24432853

RESUMO

Crystalline solids composed of one-dimensional channels with cross-sectional dimensions below 1 nm represent an intriguing class of materials with important potential applications. A key characteristic for certain applications is the average open channel persistence length, i.e., the ensemble average distance from a channel opening to the first obstruction. This paper introduces an NMR-based methodology to measure this quantity. The protocol is applied to polycrystalline specimens of two different dipeptide nanotubes: l-Ala-l-Val and its retro-analog l-Val-l-Ala. Persistence lengths derived from the NMR measurements are found to be comparable to the typical crystallite dimensions seen in scanning electron microscopy (SEM) images, indicating that the crystals of these AV and VA specimens are essentially hollow with practically no blockages. Applications of the method to an AV sample that has been pulverized in a mortar and pestle showed that the open channel persistence length was reduced from 50 to 6.6 µm, consistent with the crystallite sizes observed in SEM images.

13.
J Phys Chem Lett ; 5(10): 1766-70, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26270381

RESUMO

NMR exchange spectroscopy (EXSY) and NMR diffusion spectroscopy (PFG NMR) were applied in combination with kinetic Monte Carlo (MC) simulations to investigate self-diffusion in a mixture of carbon dioxide and an amine-functionalized ionic liquid under conditions of an exchange of carbon dioxide molecules between the reacted and unreacted states in the mixture. EXSY studies enabled residence times of carbon dioxide molecules to be obtained in the two states, whereas PFG NMR revealed time-dependent effective diffusivities for diffusion times comparable with and larger than the residence times. Analytical treatment of the PFG NMR attenuation curves as well as fitting of the PFG NMR effective diffusivities by KMC simulations enabled determination of diffusivities of carbon dioxide in the reacted and unreacted states. In contrast to carbon dioxide, the ion diffusivities were found to be diffusion time independent.

14.
J Chem Phys ; 139(15): 154703, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24160529

RESUMO

Pulsed field gradient (PFG) NMR was used to investigate the self-diffusion of carbon dioxide in alumina stabilized samaria aerogel catalyst, a promising porous catalyst for gas-phase reactions featuring high porosity and high surface area. For diffusion studies, the catalyst was prepared in two sample packing types, macroscopic monoliths (i.e., macroscopic cylindrical particles) and powder beds with particle sizes around 200 µm that are considered for catalytic applications. Studies of diffusion in these samples revealed how macroscopic packing influences the catalyst transport properties. Application of a high magnetic field of 17.6 T in the reported PFG NMR studies enabled diffusion measurements for relatively low carbon dioxide densities in the catalyst samples corresponding to a gas loading pressure of around 0.1 atm. As a result, it was possible to perform diffusion measurements for a large range of carbon dioxide loading pressures between 0.1 and 10 atm. The measured carbon dioxide diffusivities in the beds of catalyst particles are interpreted in the context of a simple diffusion-mediated exchange model previously used for zeolites and other porous materials.

15.
J Phys Chem B ; 116(30): 9141-51, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22770230

RESUMO

Self-diffusion and related short-time dynamic and structural properties were investigated for mixtures of carbon dioxide and the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [bmim](+)[Tf2N](-) for a broad range of carbon dioxide molar fractions and at different temperatures. The studies were performed by a novel multinuclear pulsed field gradient (PFG) NMR technique, which combines the advantages of a high magnetic field (17.6 T) and a high magnetic field gradient (up to 30 T/m), in combination with molecular dynamics simulations. In general, a satisfactory agreement was observed between the experimental and simulation diffusion data. Under all conditions examined, the self-diffusion coefficients of carbon dioxide were found to be approximately an order of magnitude larger than the corresponding self-diffusion coefficients of the ions. It was observed that an increase in temperature and in the amount of carbon dioxide in the ionic liquid led to an increase in the ion self-diffusivities without changing the relationship between the self-diffusion coefficients of the cations and anions. An observation of a slightly higher diffusivity of the cations in comparison to that of the anions is attributed to the preferential mobility of the cations in the direction of the ring plane. The diffusion activation energies of the ions were found to decrease gradually with an increase of the carbon dioxide content in the ionic liquid. The activation energy of the carbon dioxide diffusion in all cases was found to be smaller than those of the ions.

16.
Langmuir ; 28(27): 10296-303, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22694169

RESUMO

Carbon molecular sieve (CMS) membranes are promising materials for energy efficient separations of light gases. In this work, we report a detailed microscopic study of carbon dioxide and methane self-diffusion in three CMS membrane derived from 6FDA/BPDA(1:1)-DAM and Matrimid polymers. In addition to diffusion of one-component sorbates, diffusion of a carbon dioxide/methane mixture was investigated. Self-diffusion studies were performed by the multinuclear (i.e., (1)H and (13)C) pulsed field gradient (PFG) NMR technique which combines the advantages of high field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m). Diffusion measurements were carried out at different temperatures and for a broad range of the root-mean-square displacements of gas molecules inside the membranes. The diffusion data obtained from PFG NMR are compared with the corresponding results of membrane permeation measurements reported previously for the same membrane types. The observed differences between the transport diffusivities and self-diffusion coefficients of carbon dioxide and methane are discussed.


Assuntos
Dióxido de Carbono/química , Metano/química , Ressonância Magnética Nuclear Biomolecular/métodos , Difusão , Membranas Artificiais , Polímeros , Ácido Sórbico/química
17.
Materials (Basel) ; 5(2): 302-316, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28817046

RESUMO

In this paper we present and discuss selected results of our recent studies of sorbate self-diffusion in microporous materials. The main focus is given to transport properties of carbon molecular sieve (CMS) membranes as well as of the intergrowth of FAU-type and EMT-type zeolites. CMS membranes show promise for applications in separations of mixtures of small gas molecules, while FAU/EMT intergrowth can be used as an active and selective cracking catalyst. For both types of applications diffusion of guest molecules in the micropore networks of these materials is expected to play an important role. Diffusion studies were performed by a pulsed field gradient (PFG) NMR technique that combines advantages of high field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m). This technique has been recently introduced at the University of Florida in collaboration with the National Magnet Lab. In addition to a more conventional proton PFG NMR, also carbon-13 PFG NMR was used.

18.
J Phys Chem B ; 113(43): 14355-64, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19795901

RESUMO

This work reports the direct experimental observation of lipid exchange between liquid-ordered domains and their liquid-disordered surroundings in 3-component planar-supported multibilayers (1,2-dioleoyl-sn-glycerol-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol). The measurements of lipid lateral diffusion and exchange were carried out using proton pulsed field gradient (PFG) NMR spectroscopy with high field strength (17.6 T) and high gradient amplitudes (up to 30 T/m). Application of large gradients affords the use of sufficiently small diffusion times under the condition that the width of the gradient pulses is much smaller than the diffusion time. As a result, PFG NMR studies of time-dependent diffusion behavior in lipid bilayers become possible over submicrometer length scales of displacements, which are comparable with the domain size. Comparison of the PFG NMR diffusion data and the corresponding results of dynamic Monte Carlo simulations allowed for the estimation of domain boundary permeability and domain size at temperatures near the transition temperature for the studied bilayers.


Assuntos
Difusão , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Colesterol/química , Método de Monte Carlo , Fosfatidilcolinas/química , Fatores de Tempo
19.
J Phys Chem B ; 113(18): 6353-9, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19361225

RESUMO

In this work, we applied a novel pulsed field gradient (PFG) NMR option, which combines advantages of high-field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m), to study diffusion of anions, cations and water in two 1-ethyl-3-methylimidazolium-based ionic liquids. Application of high field allows for an easy recording of an NMR signal from small amounts of water added to the ionic liquids. Using high gradients is advantageous because under conditions of such gradients any susceptibility-induced inhomogeneities in the local magnetic field are expected to be negligibly small in comparison with the applied gradients. PFG NMR studies have been performed in a broad range of temperatures and for different diffusion times. The effect of water addition on the diffusion behavior of the anions and cations is discussed in the context of the presence of polar and nonpolar domains in the ionic liquids. A partial screening of the electrostatic interaction between the cations and anions in the polar domains by water is believed to be responsible for the following changes in the diffusion behavior, which were observed experimentally: (i) increase in the ion diffusivities with increasing water concentration, and (ii) decrease in the difference between the diffusion coefficient of the cation and that of the anion as water concentration increases.

20.
Langmuir ; 24(14): 7365-70, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18553990

RESUMO

This work demonstrates the feasibility of noninvasive studies of lipid self-diffusion in model lipid membranes on the nanoscale using proton pulsed field gradient (PFG) NMR spectroscopy with high (up to 35 T/m) gradient amplitudes. Application of high gradients affords for the use of sufficiently small diffusion times under the conditions when the width of the gradient pulses is much smaller than the diffusion time. As a result, PFG NMR studies of partially restricted or anomalous diffusion in lipid bilayers become possible over length scales as small as 100 nm. This length scale is important because it is comparable to the size of membrane domains, or lipid rafts, which are believed to exist in biomembranes. In this work, high-gradient PFG NMR has been applied to study lipid self-diffusion in three-component planar-supported multibilayers (1,2-dioleoyl- sn-glycerol-3-phosphocholine/sphingomyelin/cholesterol). The degree of lipid orientation in the bilayers was determined with (31)P NMR. A special insert was designed to mechanically align the multibilayer stack at the magic angle with respect to the direction of the constant magnetic field to address the detrimental effects of proton dipole-dipole interactions on the NMR signal. This insert is an alternative to the conventional method of magic angle orientation of lipid membranes, the goniometer probe, which is not compatible with commercial high-gradient coils because of the lack of space in the magnet bore. Macroscopic orientation of the multibilayer stacks using the insert was confirmed with (1)H NMR spectroscopic studies and the comparison of results obtained from identical experiments using a goniometer probe for orientation. Diffusion studies were carried out at three different constant magnetic field strengths ( B 0) over a range of temperatures and diffusion times. The measured diffusivities were found to be in agreement with the data obtained previously by techniques that are limited to much larger length scales of diffusion observation than high-gradient PFG NMR.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Difusão , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...