Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 157: 213737, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211506

RESUMO

Graphitic carbon nitride (g-C3N4) is explored as a novel sustainable visible light photoinitiator for the preparation of biomimetic 3D hydrogel scaffolds comprising gelatin methacrylamide (GelMA) and dopamine methacrylamide for use in tissue engineering. The initiator efficiency was assessed by comparing the swelling behavior and the stability of photopolymerized hydrogels prepared with GelMA of different degrees of functionalization and different comonomer compositions. Bioactive composite hydrogels with a 50 wt% nanohydroxyapatite (nHAp) content, to closely mimic the actual bone composition, were successfully obtained by the introduction of nHAp in the prepolymer solutions followed by photopolymerization. The composite hydrogels demonstrated enhanced mechanical properties and excellent stability in PBS verifying the preparation of robust 3D scaffolds for use in cancellous or pre-calcified bone tissue engineering applications. The in vitro cell response of the composite scaffolds exhibited high cell viability and enhanced differentiation of pre-osteoblasts to mature osteoblasts, demonstrating their osteogenic potential. This work establishes, for the first time, the excellent properties of g-C3N4 as a sustainable, visible light initiator, fully satisfying the principles of green chemistry, for the preparation of robust and biologically relevant hydrogels, and proposes a new approach to overcome the main challenges of conventional photoinitiators in cell scaffold fabrication, such as photobleaching, high cost and non-scalable synthesis employing toxic organic precursors and solvents.


Assuntos
Acrilamidas , Biomimética , Grafite , Compostos de Nitrogênio , Pirenos , Engenharia Tecidual , Luz , Hidrogéis
2.
Langmuir ; 38(45): 13674-13685, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36263911

RESUMO

Temperature-sensitive rod-like colloidal particles were synthesized by grafting a temperature-responsive polymer, poly(2-(dimethylamino)ethyl methacrylate) (PDMA), on the surface of high aspect ratio silica rods by surface-initiated atom transfer radical polymerization. The stability of the grafted polymer on the surface of the particles in aqueous solutions was found to deteriorate with time, leading to a gradual decrease of the polymer content of the hybrid colloids, which was attributed to the mechanically activated hydrolysis of the labile bonds at the polymer-silica interface. The polymer degrafting was significantly suppressed by first growing a hydrophobic poly(methyl methacrylate) block onto the particle surface to act as a barrier layer for the penetration of water molecules at the polymer-particle interface, followed by chain-extension with the hydrophilic PDMA chains. Dynamic light scattering, microscopy, and rheological measurements revealed that the PDMA block conferred a temperature-responsive behavior to the rod-like particles, which formed aggregates at temperatures above the lower critical solution temperature (LCST) of the polymer. However, in contrast to their spherical counterparts, the polymer-grafted rod-like particles did not exhibit complete thermo-reversibility upon lowering the solution temperature below the LCST of PDMA, which was reflected by different values of the diffusion coefficient for the heating and cooling cycles, indicating an irreversible rod particle aggregation upon increasing the temperature.

3.
ACS Appl Mater Interfaces ; 13(15): 17183-17195, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33734694

RESUMO

Hybrid, organic-inorganic, biocidal films exhibiting polishing properties were developed as effective long-lasting antimicrobial surface coatings. The films were prepared using cationically modified chitosan, synthesized by the reaction with 3-bromo-N,N,N-trimethylpropan-1-aminium bromide, to introduce permanent biocidal quaternary ammonium salt (QAS) groups along the polymer backbone and were cross-linked by a novel, pH-cleavable acetal cross-linker, which allowed polishing the hybrid coatings with the solution pH. TiO2 nanoparticles, modified with reduced graphene oxide (rGO) sheets, to narrow their band gap energy value and shift their photocatalytic activity in the visible light regime, were introduced within the polymer film to enhance its antibacterial activity. The hybrid coatings exhibited an effective biocidal activity in the dark (∼2 Log and ∼3 Log reduction for Gram-negative and Gram-positive bacteria, respectively), when only the QAS sites interacted with the bacteria membrane, and an excellent biocidal action upon visible-light irradiation (∼5 Log and ∼6 Log reduction for Gram-negative and Gram-positive bacteria, respectively) due to the synergistic antimicrobial effect of the QAS moieties and the rGO-modified TiO2 nanoparticles. The gradual decrease in the film thickness, upon immersion of the coatings in mildly basic (pH 8), neutral (pH 7), and acidic (pH 6) media, reaching 10, 20, and 70% reduction, respectively, after 60 days of immersion time, confirmed the polishing behavior of the films, whereas their effective antimicrobial action was retained. The biocompatibility of the hybrid films was verified in human cell culture studies. The proposed approach enables the facile development of highly functional coatings, combining biocompatibility and bactericidal action with a "kill and self-clean" mechanism that allows the regeneration of the outer surface of the coating leading to a strong and prolonged antimicrobial action.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Luz , Catálise , Linhagem Celular , Quitosana/química , Grafite/química , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Nanopartículas/química , Processos Fotoquímicos , Titânio/química
4.
Langmuir ; 34(31): 9122-9132, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30021443

RESUMO

ZnO-TiO2 core-shell photocatalysts of a complex flower-like architecture were synthesized, using a well-controlled sol-gel coating reaction of presynthesized ZnO flower-like structures. The samples were characterized by X-ray diffraction, field emission scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, diffuse reflectance UV-vis and attenuated total reflectance-Fourier transform infrared spectroscopy, nitrogen adsorption-desorption measurements, and photoluminescence measurements. Well-defined, core-shell flowers with a wurtzite ZnO core and anatase TiO2 shells, with variable shell thickness, were acquired by appropriately adjusting the ZnO/Ti precursor mass feed ratio in the reaction. Moreover, hollow TiO2 flowers were obtained, and they retained their morphology following the etching of the ZnO core in an acidic solution. The photocatalytic performance of the core-shell and hollow semiconductors was evaluated via the decoloration of a methylene blue dye solution under UV-vis irradiation. The core-shell flowers exhibited a higher decoloration rate, when compared with bare ZnO flowers, TiO2 particles, and hollow TiO2 flowers, and the photoactivity was dependent on the TiO2 shell thickness. This was attributed to the efficient separation of the photogenerated holes and electrons at the ZnO-TiO2 interface. Moreover, the most photoactive core-shell catalyst exhibited excellent reusability and stability for at least three photocatalytic cycles and excellent superhydrophilicity without UV irradiation, which is due to the increased roughness of the flower-like structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...