Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 123(2): 288-300, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29976693

RESUMO

Hypoplastic left heart syndrome is a type of congenital heart disease characterized by underdevelopment of the left ventricle, outflow tract, and aorta. The condition is fatal if aggressive palliative operations are not undertaken, but even after the complete 3-staged surgical palliation, there is significant morbidity because of progressive and ultimately intractable right ventricular failure. For this reason, there is interest in developing novel therapies for the management of right ventricular dysfunction in patients with hypoplastic left heart syndrome. Stem cell therapy may represent one such innovative approach. The field has identified numerous stem cell populations from different tissues (cardiac or bone marrow or umbilical cord blood), different age groups (adult versus neonate-derived), and different donors (autologous versus allogeneic), with preclinical and clinical experience demonstrating the potential utility of each cell type. Preclinical trials in small and large animal models have elucidated several mechanisms by which stem cells affect the injured myocardium. Our current understanding of stem cell activity is undergoing a shift from a paradigm based on cellular engraftment and differentiation to one recognizing a primarily paracrine effect. Recent studies have comprehensively evaluated the individual components of the stem cells' secretomes, shedding new light on the intracellular and extracellular pathways at the center of their therapeutic effects. This research has laid the groundwork for clinical application, and there are now several trials of stem cell therapies in pediatric populations that will provide important insights into the value of this therapeutic strategy in the management of hypoplastic left heart syndrome and other forms of congenital heart disease. This article reviews the many stem cell types applied to congenital heart disease, their preclinical investigation and the mechanisms by which they might affect right ventricular dysfunction in patients with hypoplastic left heart syndrome, and finally, the completed and ongoing clinical trials of stem cell therapy in patients with congenital heart disease.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico/terapia , Transplante de Células-Tronco/métodos , Ensaios Clínicos como Assunto , Humanos , Síndrome do Coração Esquerdo Hipoplásico/fisiopatologia , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/tendências , Células-Tronco/classificação , Células-Tronco/citologia
2.
Transl Pediatr ; 7(2): 176-187, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29770299

RESUMO

One of the most complex forms of congenital heart disease (CHD) involving single ventricle physiology is hypoplastic left heart syndrome (HLHS), characterized by underdevelopment of the left ventricle (LV), mitral and aortic valves, and narrowing of the ascending aorta. The underdeveloped LV is incapable of providing long-term systemic flow, and if left untreated, the condition is fatal. Current treatment for this condition consists of three consecutive staged palliative operations: the first is conducted within the first few weeks of birth, the second between 4 to 6 months, and the third and final surgery within the first 4 years. At the conclusion of the third surgery, systemic perfusion is provided by the right ventricle (RV), and deoxygenated blood flows passively to the pulmonary vasculature. Despite these palliative interventions, the RV, which is ill suited to provide long-term systemic perfusion, is prone to eventual failure. In the absence of satisfying curative treatments, stem cell therapy may represent one innovative approach to the management of RV dysfunction in HLHS patients. Several stem cell populations from different tissues (cardiac and non-cardiac), different age groups (adult- vs. neonate-derived), and different donors (autologous vs. allogeneic), are under active investigation. Preclinical trials in small and large animal models have elucidated several mechanisms by which these stem cells affect the injured myocardium, and are driving the shift from a paradigm based upon cellular engraftment and differentiation to one based primarily on paracrine effects. Recent studies have comprehensively evaluated the individual components of the stem cells' secretomes, shedding new light on the intracellular and extracellular pathways at the center of their therapeutic effects. This research has laid the groundwork for clinical application, and there are now several trials of stem cell therapies in pediatric populations that will provide important insights into the value of this therapeutic strategy in the management of HLHS and other forms of CHD. This article reviews the many stem cell types applied to CHD, their preclinical investigation and the mechanisms by which they might affect RV dysfunction in HLHS patients, and finally, the completed and ongoing clinical trials of stem cell therapy in patients with CHD.

3.
Springerplus ; 5(1): 772, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386258

RESUMO

Culture collections contain indispensable information about the microorganisms preserved in their repositories, such as taxonomical descriptions, origins, physiological and biochemical characteristics, bibliographic references, etc. However, information currently accessible in databases rarely adheres to common standard protocols. The resultant heterogeneity between culture collections, in terms of both content and format, notably hampers microorganism-based research and development (R&D). The optimized exploitation of these resources thus requires standardized, and simplified, access to the associated information. To this end, and in the interest of supporting R&D in the fields of agriculture, health and biotechnology, a pan-European distributed research infrastructure, MIRRI, including over 40 public culture collections and research institutes from 19 European countries, was established. A prime objective of MIRRI is to unite and provide universal access to the fragmented, and untapped, resources, information and expertise available in European public collections of microorganisms; a key component of which is to develop a dynamic Information System. For the first time, both culture collection curators as well as their users have been consulted and their feedback, concerning the needs and requirements for collection databases and data accessibility, utilised. Users primarily noted that databases were not interoperable, thus rendering a global search of multiple databases impossible. Unreliable or out-of-date and, in particular, non-homogenous, taxonomic information was also considered to be a major obstacle to searching microbial data efficiently. Moreover, complex searches are rarely possible in online databases thus limiting the extent of search queries. Curators also consider that overall harmonization-including Standard Operating Procedures, data structure, and software tools-is necessary to facilitate their work and to make high-quality data easily accessible to their users. Clearly, the needs of culture collection curators coincide with those of users on the crucial point of database interoperability. In this regard, and in order to design an appropriate Information System, important aspects on which the culture collection community should focus include: the interoperability of data sets with the ontologies to be used; setting best practice in data management, and the definition of an appropriate data standard.

4.
Hepatology ; 60(6): 1993-2007, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24729004

RESUMO

UNLABELLED: Bile salt export pump (BSEP) is responsible for biliary secretion of bile acids, a rate-limiting step in the enterohepatic circulation of bile acids and transactivated by nuclear receptor farnesoid X receptor (FXR). Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent disorder among diseases unique to pregnancy and primarily occurs in the third trimester of pregnancy, with a hallmark of elevated serum bile acids. Currently, the transcriptional regulation of BSEP during pregnancy and its underlying mechanisms and involvement in ICP are not fully understood. In this study the dynamics of BSEP transcription in vivo in the same group of pregnant mice before, during, and after gestation were established with an in vivo imaging system (IVIS). BSEP transcription was markedly repressed in the later stages of pregnancy and immediately recovered after parturition, resembling the clinical course of ICP in human. The transcriptional dynamics of BSEP was inversely correlated with serum 17ß-estradiol (E2) levels before, during, and after gestation. Further studies showed that E2 repressed BSEP expression in human primary hepatocytes, Huh 7 cells, and in vivo in mice. Such transrepression of BSEP by E2 in vitro and in vivo required estrogen receptor α (ERα). Mechanistic studies with chromatin immunoprecipitation (ChIP), protein coimmunoprecipitation (Co-IP), and bimolecular fluorescence complementation (BiFC) assays demonstrated that ERα directly interacted with FXR in living cells and in vivo in mice. CONCLUSION: BSEP expression was repressed by E2 in the late stages of pregnancy through a nonclassical E2/ERα transrepressive pathway, directly interacting with FXR. E2-mediated repression of BSEP expression represents an etiological contributing factor to ICP and therapies targeting the ERα/FXR interaction may be developed for prevention and treatment of ICP.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/metabolismo , Complicações na Gravidez/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Linhagem Celular , Estradiol/sangue , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Camundongos , Gravidez , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
BMC Genomics ; 14: 933, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24377417

RESUMO

BACKGROUND: Throughout the long history of industrial and academic research, many microbes have been isolated, characterized and preserved (whenever possible) in culture collections. With the steady accumulation in observational data of biodiversity as well as microbial sequencing data, bio-resource centers have to function as data and information repositories to serve academia, industry, and regulators on behalf of and for the general public. Hence, the World Data Centre for Microorganisms (WDCM) started to take its responsibility for constructing an effective information environment that would promote and sustain microbial research data activities, and bridge the gaps currently present within and outside the microbiology communities. DESCRIPTION: Strain catalogue information was collected from collections by online submission. We developed tools for automatic extraction of strain numbers and species names from various sources, including Genbank, Pubmed, and SwissProt. These new tools connect strain catalogue information with the corresponding nucleotide and protein sequences, as well as to genome sequence and references citing a particular strain. All information has been processed and compiled in order to create a comprehensive database of microbial resources, and was named Global Catalogue of Microorganisms (GCM). The current version of GCM contains information of over 273,933 strains, which includes 43,436 bacterial, fungal and archaea species from 52 collections in 25 countries and regions.A number of online analysis and statistical tools have been integrated, together with advanced search functions, which should greatly facilitate the exploration of the content of GCM. CONCLUSION: A comprehensive dynamic database of microbial resources has been created, which unveils the resources preserved in culture collections especially for those whose informatics infrastructures are still under development, which should foster cumulative research, facilitating the activities of microbiologists world-wide, who work in both public and industrial research centres. This database is available from http://gcm.wfcc.info.


Assuntos
Archaea/classificação , Bactérias/classificação , Bases de Dados Factuais , Fungos/classificação , Armazenamento e Recuperação da Informação , Biologia Computacional , Internet
6.
Hepatology ; 57(4): 1530-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23213087

RESUMO

UNLABELLED: As a canalicular bile acid effluxer, the bile salt export pump (BSEP) plays a vital role in maintaining bile acid homeostasis. BSEP deficiency leads to severe cholestasis and hepatocellular carcinoma (HCC) in young children. Regardless of the etiology, chronic inflammation is the common pathological process for HCC development. Clinical studies have shown that bile acid homeostasis is disrupted in HCC patients with elevated serum bile acid level as a proposed marker for HCC. However, the underlying mechanisms remain largely unknown. In this study, we found that BSEP expression was severely diminished in HCC tissues and markedly reduced in adjacent nontumor tissues. In contrast to mice, human BSEP was regulated by farnesoid X receptor (FXR) in an isoform-dependent manner. FXR-α2 exhibited a much more potent activity than FXR-α1 in transactivating human BSEP in vitro and in vivo. The decreased BSEP expression in HCC was associated with altered relative expression of FXR-α1 and FXR-α2. FXR-α1/FXR-α2 ratios were significantly increased, with undetectable FXR-α2 expression in one third of the HCC tumor samples. A similar correlation between BSEP and FXR isoform expression was confirmed in hepatoma Huh7 and HepG2 cells. Further studies showed that intrahepatic proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), were significantly elevated in HCC tissues. Treatment of Huh7 cells with IL-6 and TNF-α resulted in a marked increase in FXR-α1/FXR-α2 ratio, concurrent with a significant decrease in BSEP expression. CONCLUSION: BSEP expression is severely diminished in HCC patients associated with alteration of FXR isoform expression induced by inflammation. Restoration of BSEP expression through suppressing inflammation in the liver may reestablish bile acid homeostasis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Ácidos e Sais Biliares/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Homeostase , Humanos , Técnicas In Vitro , Interleucina-6/metabolismo , Neoplasias Hepáticas/genética , Camundongos , Camundongos Endogâmicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
PLoS One ; 2(9): e955, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17895995

RESUMO

Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.


Assuntos
Deinococcus/genética , Deinococcus/efeitos da radiação , Genoma Bacteriano , Sequência de Aminoácidos , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/efeitos da radiação , DNA Bacteriano/genética , Genes Bacterianos/genética , Raios Infravermelhos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Espectrometria por Raios X , Raios Ultravioleta
8.
PLoS Biol ; 5(4): e92, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17373858

RESUMO

In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.


Assuntos
Proteínas de Bactérias/metabolismo , Deinococcus/efeitos da radiação , Tolerância a Radiação , Deinococcus/metabolismo , Fluorescência , Ferro/metabolismo , Manganês/metabolismo , Oxirredução
9.
J Bacteriol ; 188(3): 1199-204, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428429

RESUMO

The ionizing radiation (IR) dose that yields 20% survival (D20) of Shewanella oneidensis MR-1 is lower by factors of 20 and 200 than those for Escherichia coli and Deinococcus radiodurans, respectively. Transcriptome analysis was used to identify the genes of MR-1 responding to 40 Gy (D20). We observed the induction of 170 genes and repression of 87 genes in MR-1 during a 1-h recovery period after irradiation. The genomic response of MR-1 to IR is very similar to its response to UV radiation (254 nm), which included induction of systems involved in DNA repair and prophage synthesis and the absence of differential regulation of tricarboxylic acid cycle activity, which occurs in IR-irradiated D. radiodurans. Furthermore, strong induction of genes encoding antioxidant enzymes in MR-1 was observed. DNA damage may not be the principal cause of high sensitivity to IR, considering that MR-1 carries genes encoding a complex set of DNA repair systems and 40 Gy IR induces less than one double-strand break in its genome. Instead, a combination of oxidative stress, protein damage, and prophage-mediated cell lysis during irradiation and recovery might underlie this organism's great sensitivity to IR.


Assuntos
Dano ao DNA/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Análise de Sequência com Séries de Oligonucleotídeos , Radiação Ionizante , Shewanella/efeitos da radiação , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/efeitos da radiação , Estresse Oxidativo , Prófagos/genética , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Shewanella/genética , Raios Ultravioleta
10.
BMC Evol Biol ; 5: 57, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16242020

RESUMO

BACKGROUND: Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria. RESULTS: By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27) and Deinococcus megaplasmid (DR177). CONCLUSION: After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of horizontally transferred genes, we also show that the single megaplasmid of Thermus and the DR177 megaplasmid of Deinococcus are homologous and probably were inherited from the common ancestor of these bacteria.


Assuntos
Deinococcus/genética , Genoma Arqueal , Thermus thermophilus/genética , Aclimatação , Archaea/genética , Dano ao DNA , Reparo do DNA , Escherichia coli/metabolismo , Raios gama , Transferência Genética Horizontal , Genes Arqueais , Genes Bacterianos , Genoma , Genoma Bacteriano , Temperatura Alta , Ferro/química , Manganês/química , Modelos Genéticos , Família Multigênica , Fenótipo , Filogenia , Plasmídeos/metabolismo , Temperatura
11.
FEMS Microbiol Rev ; 29(2): 361-75, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15808748

RESUMO

We have recently shown that Deinococcus radiodurans and other radiation resistant bacteria accumulate exceptionally high intracellular manganese and low iron levels. In comparison, the dissimilatory metal-reducing bacterium Shewanella oneidensis accumulates Fe but not Mn and is extremely sensitive to radiation. We have proposed that for Fe-rich, Mn-poor cells killed at radiation doses which cause very little DNA damage, cell death might be induced by the release of Fe(II) from proteins during irradiation, leading to additional cellular damage by Fe(II)-dependent oxidative stress. In contrast, Mn(II) ions concentrated in D. radiodurans might serve as antioxidants that reinforce enzymic systems which defend against oxidative stress during recovery. We extend our hypothesis here to include consideration of respiration, tricarboxylic acid cycle activity, peptide transport and metal reduction, which together with Mn(II) transport represent potential new targets to control recovery from radiation injury.


Assuntos
Deinococcus/crescimento & desenvolvimento , Deinococcus/efeitos da radiação , Estresse Oxidativo , Shewanella/crescimento & desenvolvimento , Shewanella/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deinococcus/fisiologia , Ferro/metabolismo , Manganês/metabolismo , Tolerância a Radiação , Radiação Ionizante , Shewanella/fisiologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...