Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839082

RESUMO

Carbon nanotubes (CNTs) possess excellent physicochemical and structural properties alongside their nano dimensions, constituting a medical platform for the delivery of different therapeutic molecules and drug systems. Hydroxytyrosol (HT) is a molecule with potent antioxidant properties that, however, is rapidly metabolized in the organism. HT immobilized on functionalized CNTs could improve its oral absorption and protect it against rapid degradation and elimination. This study investigated the effects of cellular oxidized multiwall carbon nanotubes (oxMWCNTs) as biocompatible carriers of HT. The oxidation of MWCNTs via H2SO4 and HNO3 has a double effect since it leads to increased hydrophilicity, while the introduced oxygen functionalities can contribute to the delivery of the drug. The in vitro effects of HT, oxMWCNTS, and oxMWCNTS functionalized with HT (oxMWCNTS_HT) were studied against two different cell lines (NIH/3T3 and Tg/Tg). We evaluated the toxicity (MTT and clonogenic assay), cell cycle arrest, and reactive oxygen species (ROS) formation. Both cell lines coped with oxMWCNTs even at high doses. oxMWCNTS_HT acted as pro-oxidants in Tg/Tg cells and as antioxidants in NIH/3T3 cells. These findings suggest that oxMWCNTs could evolve into a promising nanocarrier suitable for targeted drug delivery in the future.

2.
Materials (Basel) ; 15(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35888487

RESUMO

The use of amorphous microspheres as filler in composites is promising due to their light weight, low cost, incombustibility, and the ability to alter relevant properties of the final composite. Contrary to glass spheres, perlite microspheres are much cheaper and can be tailor-made to facilitate purpose-oriented alteration of the final composite. We report the use of perlite microspheres for the preparation of: (1) composites, through a compression molding (hot pressing) technique; and (2) composite filaments, in a single screw extruder, as well as their use for sample printing through Fused Deposition Modeling (FDM). Proper characterization of the produced composites allows for their evaluation in terms of physical, thermal, and mechanical properties and with regards to the manufacturing technique, the filler fraction, and size. Composite samples of acceptable quality in terms of filler survival and dispersion as well as mechanical properties were produced through compression molding using fine expanded perlite microspheres (<90 µm) up to an infill ratio of 40 vol.%. Fine fillers (<90 µm) performed well in FDM, allowing printing of composite dogbone samples with a higher Young's modulus and elongation and similar ultimate tensile strength compared to benchmark, up to an infill ratio of 20 vol.%. Composite samples present a slightly lower burning rate compared to those produced solely by ABS. Perlite microspheres present good workability in both applications, possessing satisfactory performance as filler in the composites, and can thus be assumed a promising multifunctional filler for various thermoplastics considering their low price, environmental impact, and fire rating.

3.
Molecules ; 25(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397274

RESUMO

Recently we have highlighted the importance of hypergolic reactions in carbon materials synthesis. In an effort to expand this topic with additional new paradigms, herein we present novel preparations of carbon nanomaterials, such-like carbon nanosheets and fullerols (hydroxylated fullerenes), through spontaneous ignition of coffee-sodium peroxide (Na2O2) and C60-Na2O2 hypergolic mixtures, respectively. In these cases, coffee and fullerenes played the role of the combustible fuel, whereas sodium peroxide the role of the strong oxidizer (e.g., source of highly concentrated H2O2). The involved reactions are both thermodynamically and kinetically favoured, thus allowing rapid product formation at ambient conditions. In addition, we provide tips on how to exploit the released energy of such highly exothermic reactions in the generation of useful work.


Assuntos
Fulerenos/química , Oxirredução , Peróxidos/química
4.
Nanomaterials (Basel) ; 10(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245030

RESUMO

Carbon formation from organic precursors is an energy-consuming process that often requires the heating of a precursor in an oven at elevated temperature. In this paper, we present a conceptually different synthesis pathway for functional carbon materials based on hypergolic mixtures, i.e., mixtures that spontaneously ignite at ambient conditions once its ingredients contact each other. The reactions involved in such mixtures are highly exothermic, giving-off sizeable amounts of energy; hence, no any external heat source is required for carbonization, thus making the whole process more energy-liberating than energy-consuming. The hypergolic mixtures described here contain a combustible organic solid, such as nitrile rubber or a hydrazide derivative, and fuming nitric acid (100% HNO3) as a strong oxidizer. In the case of the nitrile rubber, carbon nanosheets are obtained, whereas in the case of the hydrazide derivative, photoluminescent carbon dots are formed. We also demonstrate that the energy released from these hypergolic reactions can serve as a heat source for the thermal conversion of certain triazine-based precursors into graphitic carbon nitride. Finally, certain aspects of the derived functional carbons in waste removal are also discussed.

5.
J Phys Chem B ; 121(17): 4610-4619, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28398066

RESUMO

Strontium borophosphate glasses of composition xSrO·(1 - x)·[0.68B2O3·0.32P2O5], 0.40 ≤ x ≤ 0.68, have been prepared by fast quenching of high-temperature melts and studied using Raman spectroscopy. In order to comprehend and confirm the obtained spectroscopic Raman data, crystalline compounds and glass-ceramics of analogous compositions were also prepared and studied. Also, ab initio molecular electronic structure theory was used to predict and confirm the experimental vibrational spectra The comparison between theoretical and experimental results showed a good overall agreement. The analysis has focused on a new detailed interpretation of the P-O-B Raman bands. Also, the analysis has revealed a divergent modification of the reported glasses near the meta-stoichiometry where the dominant species in the glass network were found to be borophosphate chains [BP2O9]5-, pyrophosphate P2O74-, and orthophosphate PO43- units.

6.
Phys Chem Chem Phys ; 18(15): 10637-46, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27035846

RESUMO

A magnetic photocatalytic material composed of nanoscale zero-valent iron (nZVI) homogeneously distributed over a mesoporous nanocrystalline TiO2 matrix has been prepared by a multistage chemical process, including sol-gel technique, wet impregnation, and chemical reduction. X-ray powder diffraction and Raman spectroscopy were used for the structural and chemical characterization of the magnetic photocatalyst, while bulk magnetization measurements and scanning/transmission electron microscopy were employed to determine the physical and textural properties of the photocatalyst. The synthesized nZVI@TiO2 photocatalyst shows very high efficiency in the removal of hexavalent chromium, Cr(vi), from water. The degradation rate follows a pseudo-first-order kinetic model. Most importantly, the remarkable efficiency of the photocatalyst is found to be due to the synergistic contributions of both counterparts, nZVI and TiO2, as validated by comparative experiments with neat TiO2 and nZVI@TiO2 under UV-C irradiation and without irradiation. New insights into the mechanism of synergistic degradation of chromium(vi) and suppressed oxidation of nZVI particles in the composite material are proposed and therein discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...