Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511205

RESUMO

Intranasal vaccination using influenza vectors is a promising approach to developing vaccines against respiratory pathogens due to the activation of the mucosa-associated immune response. However, there is no clear evidence of a vector design that could be considered preferable. To find the optimal structure of an influenza vector with a modified NS genomic segment, we constructed four vector expressing identical transgene sequences inherited from the F protein of the respiratory syncytial virus (RSV). Two vectors were designed aiming at transgene accumulation in the cytosol. Another two were supplemented with an IgGκ signal peptide prior to the transgene for its extracellular delivery. Surprisingly, adding the IgGκ substantially enhanced the T-cell immune response to the CD8 epitope of the transgene. Moreover, this strategy allowed us to obtain a better protection of mice from the RSV challenge after a single intranasal immunization. Protection was achieved without antibodies, mediated by a balanced T-cell immune response including the formation of the RSV specific effector CD8+ IFNγ+/IL10+-producing cells and the accumulation of Treg cells preventing immunopathology in the lungs of infected mice. In addition to the presented method for optimizing the influenza vector, our results highlight the possibility of achieving protection against RSV through a respiratory-associated T-cell immune response alone.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Camundongos , Humanos , Anticorpos Antivirais , Vírus Sincicial Respiratório Humano/genética , Camundongos Endogâmicos BALB C
2.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108602

RESUMO

Tuberculosis is a major global threat to human health. Since the widely used BCG vaccine is poorly effective in adults, there is a demand for the development of a new type of boost tuberculosis vaccine. We designed a novel intranasal tuberculosis vaccine candidate, TB/FLU-04L, which is based on an attenuated influenza A virus vector encoding two mycobacterium antigens, Ag85A and ESAT-6. As tuberculosis is an airborne disease, the ability to induce mucosal immunity is one of the potential advantages of influenza vectors. Sequences of ESAT-6 and Ag85A antigens were inserted into the NS1 open reading frame of the influenza A virus to replace the deleted carboxyl part of the NS1 protein. The vector expressing chimeric NS1 protein appeared to be genetically stable and replication-deficient in mice and non-human primates. Intranasal immunization of C57BL/6 mice or cynomolgus macaques with the TB/FLU-04L vaccine candidate induced Mtb-specific Th1 immune response. Single TB/FLU-04L immunization in mice showed commensurate levels of protection in comparison to BCG and significantly increased the protective effect of BCG when applied in a "prime-boost" scheme. Our findings show that intranasal immunization with the TB/FLU-04L vaccine, which carries two mycobacterium antigens, is safe, and induces a protective immune response against virulent M. tuberculosis.


Assuntos
Vacinas contra Influenza , Influenza Humana , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Adulto , Camundongos , Humanos , Animais , Vacina BCG , Antígenos de Bactérias/genética , Camundongos Endogâmicos C57BL , Tuberculose/prevenção & controle , Proteínas de Bactérias/genética , Aciltransferases/genética
3.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770854

RESUMO

An efficient approach to the synthesis of olefin metathesis HG-type catalysts containing an N→Ru bond in a six-membered chelate ring was proposed. For the most part, these ruthenium chelates can be prepared easily and in high yields based on the interaction between 2-vinylbenzylamines and Ind II (the common precursor for Ru-complex synthesis). It was demonstrated that the increase of the steric volume of substituents attached to the nitrogen atom and in the α-position of the benzylidene fragment leads to a dramatic decrease in the stability of the target ruthenium complexes. The bulkiest iPr substituent bonded to the nitrogen atom or to the α-position does not allow the closing of the chelate cycle. N,N-Diethyl-1-(2-vinylphenyl)propan-1-amine is a limiting case; its interaction with Ind II makes it possible to isolate the corresponding ruthenium chelate in a low yield (5%). Catalytic activity of the synthesized complexes was tested in RCM reactions and compared with α-unsubstituted catalysts obtained previously. The structural peculiarities of the final ruthenium complexes were thoroughly investigated using XRD and NMR analysis, which allowed making a reliable correlation between the structure of the complexes and their catalytic properties.

4.
Nat Commun ; 14(1): 149, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627290

RESUMO

Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.


Assuntos
COVID-19 , Linfócitos T Citotóxicos , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
5.
Vaccines (Basel) ; 10(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146622

RESUMO

The SARS-CoV-2 and influenza viruses are the main causes of human respiratory tract infections with similar disease manifestation but distinct mechanisms of immunopathology and host response to the infection. In this study, we investigated the SARS-CoV-2-specific CD4+ T cell phenotype in comparison with H1N1 influenza-specific CD4+ T cells. We determined the levels of SARS-CoV-2- and H1N1-specific CD4+ T cell responses in subjects recovered from COVID-19 one to 15 months ago by stimulating PBMCs with live SARS-CoV-2 or H1N1 influenza viruses. We investigated phenotypes and frequencies of main CD4+ T cell subsets specific for SARS-CoV-2 using an activation induced cell marker assay and multicolor flow cytometry, and compared the magnitude of SARS-CoV-2- and H1N1-specific CD4+ T cells. SARS-CoV-2-specific CD4+ T cells were detected 1-15 months post infection and the frequency of SARS-CoV-2-specific central memory CD4+ T cells was increased with the time post-symptom onset. Next, SARS-CoV-2-specific CD4+ T cells predominantly expressed the Th17 phenotype, but the level of Th17 cells in this group was lower than in H1N1-specific CD4+ T cells. Finally, we found that the lower level of total Th17 subset within total SARS-CoV-2-specific CD4+ T cells was linked with the low level of CCR4+CXCR3- 'classical' Th17 cells if compared with H1N1-specific Th17 cells. Taken together, our data suggest the involvement of Th17 cells and their separate subsets in the pathogenesis of SARS-CoV-2- and influenza-induced pneumonia; and a better understanding of Th17 mediated antiviral immune responses may lead to the development of new therapeutic strategies.

6.
Viruses ; 14(5)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35632823

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in humans more than two years ago and caused an unprecedented socio-economic burden on all countries around the world. Since then, numerous studies have attempted to identify various mechanisms involved in the alterations of innate and adaptive immunity in COVID-19 patients, with the ultimate goal of finding ways to correct pathological changes and improve disease outcomes. State-of-the-art research methods made it possible to establish precise molecular mechanisms which the new virus uses to trigger multisystem inflammatory syndrome and evade host antiviral immune responses. In this review, we present a comprehensive analysis of published data that provide insight into pathological changes in T and B cell subsets and their phenotypes, accompanying the acute phase of the SARS-CoV-2 infection. This knowledge might help reveal new biomarkers that can be utilized to recognize case severity early as well as to provide additional objective information on the effective formation of SARS-CoV-2-specific immunity and predict long-term complications of COVID-19, including a large variety of symptoms termed the 'post-COVID-19 syndrome'.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/complicações , Humanos , Imunidade Inata , Síndrome de COVID-19 Pós-Aguda
7.
Vaccines (Basel) ; 10(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35062730

RESUMO

The COVID-19 pandemic is ongoing, and the need for safe and effective vaccines to prevent infection and to control spread of the virus remains urgent. Here, we report the development of a SARS-CoV-2 subunit vaccine candidate (Betuvax-CoV-2) based on RBD and SD1 domains of the spike (S) protein fused to a human IgG1 Fc fragment. The antigen is adsorbed on betulin adjuvant, forming spherical particles with a size of 100-180 nm, mimicking the size of viral particles. Here we confirm the potent immunostimulatory activity of betulin adjuvant, and demonstrate that two immunizations of mice with Betuvax-CoV-2 elicited high titers of RBD-specific antibodies. The candidate vaccine was also effective in stimulating a neutralizing antibody response and T cell immunity. The results indicate that Betuvax-CoV-2 has good potential for further development as an effective vaccine against SARS-CoV-2.

8.
Vaccines (Basel) ; 9(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34835204

RESUMO

BCG is the only licensed vaccine against Mycobacterium tuberculosis (M.tb) infection. Due to its intramuscular administration route, BCG is unable to induce a local protective immune response in the respiratory system. Moreover, BCG has a diminished ability to induce long-lived memory T-cells which are indispensable for antituberculosis protection. Recently we described the protective efficacy of new mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing TB10.4 and HspX proteins of M.tb within an NS1 influenza protein open reading frame. In the present work, the innate and adaptive immune response to immunization with the Flu/THSP and the immunological properties of vaccine candidate in the BCG-prime → Flu/THSP vector boost vaccination scheme are studied in mice. It was shown that the mucosal administration of Flu/THSP induces the incoming of interstitial macrophages in the lung tissue and stimulates the expression of co-stimulatory CD86 and CD83 molecules on antigen-presenting cells. The T-cellular immune response to Flu/THSP vector was mediated predominantly by the IFNγ-producing CD8+ lymphocytes. BCG-prime → Flu/THSP vector boost immunization scheme was shown to protect mice from severe lung injury caused by M.tb infection due to the enhanced T-cellular immune response, mediated by antigen-specific effector and central memory CD4+ and CD8+ T-lymphocytes.

9.
Vaccines (Basel) ; 9(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923548

RESUMO

New strategies providing protection against tuberculosis (TB) are still pending. The airborne nature of Mycobacterium tuberculosis (M.tb) infection assumes that the mucosal delivery of the TB vaccine could be a more promising strategy than the systemic route of immunization. We developed a mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing truncated NS1 protein NS1(1-124) and a full-length TB10.4 and HspX proteins of M.tb within an NS1 protein open reading frame. The Flu/THSP vector was safe and stimulated a systemic TB-specific CD4+ and CD8+ T-cell immune response after intranasal immunization in mice. Double intranasal immunization with the Flu/THSP vector induced protection against two virulent M.tb strains equal to the effect of BCG subcutaneous injection in mice. In a guinea pig TB model, one intranasal immunization with Flu/THSP improved protection against M.tb when tested as a vaccine candidate for boosting BCG-primed immunity. Importantly, enhanced protection provided by a heterologous BCG-prime → Flu/THSP vector boost immunization scheme was associated with a significantly reduced lung and spleen bacterial burden (mean decrease of 0.77 lg CFU and 0.72 lg CFU, respectively) and improved lung pathology 8.5 weeks post-infection with virulent M.tb strain H37Rv.

10.
Microorganisms ; 9(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810549

RESUMO

Influenza viruses with an impaired NS1 protein are unable to antagonize the innate immune system and, therefore, are highly immunogenic because of the self-adjuvating effect. Hence, NS1-mutated viruses are considered promising candidates for the development of live-attenuated influenza vaccines and viral vectors for intranasal administration. We investigated whether the immunogenic advantage of the virus expressing only the N-terminal half of the NS1 protein (124 a.a.) can be translated into the induction of protective immunity against a heterologous influenza virus in mice. We found that immunization with either the wild-type A/PR/8/34 (H1N1) influenza strain (A/PR8/NSfull) or its NS1-shortened counterpart (A/PR8/NS124) did not prevent the viral replication in the lungs after the challenge with the A/Aichi/2/68 (H3N2) virus. However, mice immunized with the NS1-shortened virus were better protected from lethality after the challenge with the heterologous virus. Besides showing the enhanced influenza-specific CD8+ T-cellular response in the lungs, immunization with the A/PR8/NS124 virus resulted in reduced concentrations of proinflammatory cytokines and the lower extent of leukocyte infiltration in the lungs after the challenge compared to A/PR8/NSfull or the control group. The data show that intranasal immunization with the NS1-truncated virus may better induce not only effector T-cells but also certain immunoregulatory mechanisms, reducing the severity of the innate immune response after the heterologous challenge.

11.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 2): 86-90, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33614131

RESUMO

In the title compound, C20H19NO5, the central six-membered ring has a slightly distorted half-chair conformation, with puckering parameters of Q T = 0.3387 (11) Å, θ = 49.11 (19)° and φ = 167.3 (2)°. The conformation of the fused pyrrolidine ring is that of an envelope. Mol-ecules are connected by inter-molecular C-H⋯O hydrogen bonds, C-H⋯π inter-actions and π-π stacking inter-actions [centroid-to-centroid distance = 3.9536 (11) Å, with a slippage of 2.047 Å], forming a three-dimensional network. The most important contributions to the surface contacts are from H⋯H (46.3%), O⋯H/H⋯O (31.5%) and C⋯H/H⋯C (17.3%) inter-actions, as concluded from a Hirshfeld surface analysis.

12.
J Mater Chem B ; 8(41): 9576-9588, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33005912

RESUMO

While DNA and messenger RNA (mRNA) based therapies are currently changing the biomedical field, the delivery of genetic materials remains the key problem preventing the wide introduction of these methods into clinical practice. Therefore, the creation of new methods for intracellular gene delivery, particularly to hard-to-transfect, clinically relevant cell populations is a pressing issue. Here, we report on the design of a novel approach to format 50-150 nm calcium carbonate particles in the vaterite state and using them as a template for polymeric core-shell nanoparticles. We apply such core-shell nanoparticles as safe and efficient carriers for mRNA and pDNA. We prove that such nanocarriers are actively internalized by up to 99% of primary T-lymphocytes and exert minimal toxicity with the viability of >90%. We demonstrate that these nanocarriers mediate more efficient transfection compared with the standard electroporation method (90% vs. 51% for mRNA and 62% vs. 39% for plasmid DNA) in primary human T-lymphocytes as a model of the hard to transfect type that is widely used in gene and cell therapy approaches. Importantly, these polymeric nanocarriers can be used in serum containing basic culture medium without special conditions and equipment, thus having potential for being introduced in clinical development. As a result, we have provided proof-of-principle that our nanosized containers represent a promising universal non-viral platform for efficient and safe gene delivery.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/química , Polieletrólitos/química , Células Cultivadas , DNA/administração & dosagem , DNA/genética , Humanos , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Linfócitos T/metabolismo , Transfecção/métodos
13.
Vaccines (Basel) ; 8(2)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532097

RESUMO

This study describes a double-blind randomized placebo-controlled phase I clinical trial in healthy adults of a new potential pandemic H7N9 live attenuated influenza vaccine (LAIV) based on the human influenza virus of Yangtze River Delta hemagglutinin lineage (ClinicalTrials.gov Identifier: NCT03739229). Two doses of H7N9 LAIV or placebo were administered intranasally to 30 and 10 subjects, respectively. The vaccine was well-tolerated and not associated with increased rates of adverse events or with any serious adverse events. Vaccine virus was detected in nasal swabs during the 6 days after vaccination or revaccination. A lower frequency of shedding was observed after the second vaccination. Twenty-five clinical viral isolates obtained after the first and second doses of vaccine retained the temperature-sensitive and cold-adapted phenotypic characteristics of LAIV. There was no confirmed transmission of the vaccine strain from vaccinees to placebo recipients. After the two H7N9 LAIV doses, an immune response was observed in 96.6% of subjects in at least one of the assays conducted.

14.
Sci Rep ; 9(1): 18240, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796757

RESUMO

Meglumine acridone acetate (MA) is used in Russia for the treatment of influenza and other acute respiratory viral infections. It was assumed, until recently, that its antiviral effect was associated with its potential ability to induce type I interferon. Advanced studies, however, have shown the failure of 10-carboxymethyl-9-acridanone (CMA) to activate human STING. As such, MA's antiviral properties are still undergoing clarification. To gain insight into MA's mechanisms of action, we carried out RNA-sequencing analysis of global transcriptomes in MA-treated (MA+) human peripheral blood mononuclear cells (PBMCs). In response to treatment, approximately 1,223 genes were found to be differentially expressed, among which 464 and 759 were identified as either up- or down-regulated, respectively. To clarify the cellular and molecular processes taking place in MA+ cells, we performed a functional analysis of those genes. We have shown that evident MA subcellular localizations are: at the nuclear envelope; inside the nucleus; and diffusely in perinuclear cytoplasm. Postulating that MA may be a nuclear receptor agonist, we carried out docking simulations with PPARα and RORα ligand binding domains including prediction and molecular dynamics-based analysis of potential MA binding poses. Finally, we confirmed that MA treatment enhanced nuclear apoptosis in human PBMCs. The research presented here, in our view, indicates that: (i) MA activity is mediated by nuclear receptors; (ii) MA is a possible PPARα and/or RORα agonist; (iii) MA has an immunosuppressive effect; and (iv) MA induces apoptosis through the mitochondrial signaling pathway.


Assuntos
Acridinas/farmacologia , Apoptose/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Acridonas/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Meglumina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
15.
Scand J Immunol ; 89(2): e12734, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30471128

RESUMO

Expression of gene of arginine deiminase (AD) allows adaptation of Streptococcus pyogenes to adverse environmental conditions. AD activity can lead to L-arginine deficiency in the host cells' microenvironment. Bioavailability of L-arginine is an important factor regulating the functions of the immune cells in mammals. By introducing a mutation into S pyogenes M46-16, we obtained a strain with inactivated arcA/sagp gene (M49-16 delArcA), deficient in AD. This allowed elucidating the function of AD in pathogenesis of streptococcal infection. The virulence of the parental and mutant strains was examined in a murine model of subcutaneous streptococcal infection. L-arginine concentration in the plasma of mice infected with S pyogenes M49-16 delArcA remained unchanged in course of the entire experiment. At the same time mice infected with S pyogenes M49-16 demonstrated gradual diminution of L-arginine concentration in the blood plasma, which might be due to the activity of streptococcal AD. Mice infected with S pyogenes M49-16 delArcA demonstrated less intensive bacterial growth in the primary foci and less pronounced bacterial dissemination as compared with animals infected with the parental strain S pyogenes M46-16. Similarly, thymus involution, alterations in apoptosis, thymocyte subsets and Treg cells differentiation were less pronounced in mice infected with S pyogenes M49-16 delArcA than in those infected with the parental strain. The results obtained showed that S pyogenes M49-16 delArcA, unable to produce AD, had reduced virulence in comparison with the parental S pyogenes M49-16 strain. AD is an important factor for the realization of the pathogenic potential of streptococci.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Linfócitos T/fisiologia , Timo/patologia , Animais , Apoptose , Arginina/metabolismo , Atrofia , Proteínas de Bactérias/genética , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hidrolases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mutagênese Sítio-Dirigida , Mutação/genética , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...