Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 167(2): 154-167, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37458164

RESUMO

Mitochondrial enzyme 17ß-hydroxysteroid dehydrogenase type 10 (HSD10) is a potential molecular target for treatment of mitochondrial-related disorders such as Alzheimer's disease (AD). Its over-expression in AD brains is one of the critical factors disturbing the homeostasis of neuroprotective steroids and exacerbating amyloid beta (Aß)-mediated mitochondrial toxicity and neuronal stress. This study was focused on revalidation of the most potent HSD10 inhibitors derived from benzothiazolyl urea scaffold using fluorescent-based enzymatic assay with physiologically relevant substrates of 17ß-oestradiol and allopregnanolone. The oestradiol-based assay led to the identification of two nanomolar inhibitors (IC50 70 and 346 nM) differing from HSD10 hits revealed from the formerly used assay. Both identified inhibitors were found to be effective also in allopregnanolone-based assay with non-competitive or uncompetitive mode of action. In addition, both inhibitors were confirmed to penetrate the HEK293 cells and they were able to inhibit the HSD10 enzyme in the cellular environment. Both molecules seem to be potential lead structures for further research and development of HDS10 inhibitors.

2.
Eur J Med Chem ; 258: 115593, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390508

RESUMO

17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 µM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17ß-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , 17-Hidroxiesteroide Desidrogenases , Encéfalo/metabolismo , Inibidores Enzimáticos/química
3.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652925

RESUMO

Two new minor Amaryllidaceae alkaloids were isolated from Hippeastrum × hybridum cv. Ferrari and Narcissus pseudonarcissus cv. Carlton. The chemical structures were identified by various spectroscopic (one- and two-dimensional (1D and 2D) NMR, circular dichroism (CD), high-resolution mass spectrometry (HRMS) and by comparison with literature data of similar compounds. Both isolated alkaloids were screened for their human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) inhibition activity. One of the new compounds, a heterodimer alkaloid of narcikachnine-type, named narciabduliine (2), showed balanced inhibition potency for both studied enzymes, with IC50 values of 3.29 ± 0.73 µM for hAChE and 3.44 ± 0.02 µM for hBuChE. The accommodation of 2 into the active sites of respective enzymes was predicted using molecular modeling simulation.


Assuntos
Alcaloides/química , Alcaloides de Amaryllidaceae/química , Inibidores da Colinesterase/química , Colinesterases/ultraestrutura , Alcaloides/farmacologia , Doença de Alzheimer , Alcaloides de Amaryllidaceae/farmacologia , Butirilcolinesterase/química , Butirilcolinesterase/ultraestrutura , Domínio Catalítico/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Colinesterases/química , Dicroísmo Circular , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
4.
J Enzyme Inhib Med Chem ; 36(1): 437-449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33467931

RESUMO

The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.


Assuntos
Inibidores da Colinesterase/farmacologia , Compostos de Piridínio/farmacologia , Compostos de Quinolínio/farmacologia , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Compostos de Quinolínio/síntese química , Compostos de Quinolínio/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
Biochemistry ; 59(17): 1680-1687, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275395

RESUMO

Human cyclophilin D is a mitochondrial peptidyl-prolyl isomerase that plays a role in regulating the opening of the mitochondrial permeability transition pore. It is considered a viable and promising molecular target for the treatment of diseases for which disease development is associated with pore opening, e.g., Alzheimer's disease or ischemia/reperfusion injury. Currently available and widely used in vitro methods based on Kofron's assay for determining cyclophilin D activity suffer from serious drawbacks and limitations. In this study, a completely novel approach for an in vitro assay of cyclophilin D activity using RNase T1 refolding is introduced. The method is simple and is more in line with the presumed physiological role of cyclophilin D in protein folding than Kofron's assay, which relies on a peptide substrate. The method is applicable for identifying novel inhibitors of cyclophilin D as potential drugs for the treatment of the diseases mentioned above. Moreover, the description of CypD activity in the in vitro RNase T1 refolding assay reveals new possibilities for investigating the role of cyclophilin D in protein folding in cells and may lead to a better understanding of its pathological and physiological roles.


Assuntos
Descoberta de Drogas , Mitocôndrias/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Redobramento de Proteína , Ribonuclease T1/química , Animais , Aspergillus oryzae/enzimologia , Bovinos , Peptidil-Prolil Isomerase F/química , Humanos , Modelos Moleculares , Conformação Proteica
6.
Biomolecules ; 9(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683947

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen associated with cystic fibrosis. This bacterium produces, among other virulence factors, a soluble d-galactose-specific lectin PA-IL (LecA). PA-IL plays an important role in the adhesion to the host cells and is also cytotoxic. Therefore, this protein is an interesting therapeutic target, suitable for inhibition by carbohydrate-based compounds. In the current study, ß-d-galactopyranoside-containing tri- and tetravalent glycoclusters were synthesized. Methyl gallate and pentaerythritol equipped with propargyl groups were chosen as multivalent scaffolds and the galactoclusters were built from the above-mentioned cores by coupling ethylene or tetraethylene glycol-bridges and peracetylated propargyl ß-d-galactosides using 1,3-dipolar azide-alkyne cycloaddition. The interaction between galactoside derivatives and PA-IL was investigated by several biophysical methods, including hemagglutination inhibition assay, isothermal titration calorimetry, analytical ultracentrifugation, and surface plasmon resonance. Their ability to inhibit the adhesion of P. aeruginosa to bronchial cells was determined by ex vivo assay. The newly synthesized multivalent galactoclusters proved to be significantly better ligands than simple d-galactose for lectin PA-IL and as a result, two representatives of the dendrimers were able to decrease adhesion of P. aeruginosa to bronchial cells to approximately 32% and 42%, respectively. The results may provide an opportunity to develop anti-adhesion therapy for the treatment of P. aeruginosa infection.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Galactose/farmacologia , Lectinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Proteínas de Bactérias/genética , Galactose/síntese química , Galactose/química , Humanos , Lectinas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia
7.
Molecules ; 24(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216664

RESUMO

Series of multivalent α-l-fucoside containing glycoclusters and variously decorated l-fucosides were synthesized to find potential inhibitors of fucose-specific lectins and study the structure-binding affinity relationships. Tri- and tetravalent fucoclusters were built using copper-mediated azide-alkyne click chemistry. Series of fucoside monomers and dimers were synthesized using various methods, namely glycosylation, an azide-alkyne click reaction, photoinduced thiol-en addition, and sulfation. The interactions between compounds with six fucolectins of bacterial or fungal origin were tested using a hemagglutination inhibition assay. As a result, a tetravalent, α-l-fucose presenting glycocluster showed to be a ligand that was orders of magnitude better than a simple monosaccharide for tested lectins in most cases, which can nominate it as a universal ligand for studied lectins. This compound was also able to inhibit the adhesion of Pseudomonas aeruginosa cells to human epithelial bronchial cells. A trivalent fucocluster with a protected amine functional group also seems to be a promising candidate for designing glycoconjugates and chimeras.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lectinas/química , Lectinas/metabolismo , Fucose/química , Fucose/metabolismo , Hemaglutinação , Testes de Inibição da Hemaglutinação , Humanos , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...