Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Horm Res Paediatr ; : 1-8, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744258

RESUMO

INTRODUCTION: Mutations in the thyroid hormone receptor alpha (THRA) gene are a rare cause of thyroid hormone resistance, which leads to a pleomorphic phenotypic spectrum. Hormonal profiles are variable and subtle, making laboratory diagnoses challenging. Genetic evaluation can be a helpful tool in diagnosing these cases. CASE PRESENTATION: Three patients (P1, P2, and P3) from unrelated families presented to their endocrinologists with short stature and abnormalities in thyroid function results. P1 showed hypoactivity and mild thyroid-stimulating hormone (TSH) elevation. P2 presented with a mild developmental delay and a hormonal profile initially interpreted as central hypothyroidism. Patient P3 had severe symptoms, including hypotonia, developmental delay, normal TSH, hypercholesterolemia, severe hypertriglyceridemia, high amylase levels, and mild pericardial effusion. All the patients had low free thyroxine (FT4) levels, mild constipation, and short stature. The patients underwent exome sequencing analysis that identified three different heterozygous variants in the THRA gene (P1 and P2 had missense variants, and P3 had a stop codon variant). All patients were treated with levothyroxine replacement, improving their clinical symptoms, such as constipation, and neurological symptoms. P1 and P2 were also treated with the recombinant human growth hormone (rhGH). The improvements in growth velocity and height standard deviation scores (SDS) were remarkable. Notably, P1 had a total height gain of 2.5 SDS, reaching an adult height within the normal range. CONCLUSION: THRA gene defects can lead to growth disorders with different phenotypes. Children with THRA mutations can benefit from adequate treatment with levothyroxine and may respond well to rhGH treatment.

2.
Arch. endocrinol. metab. (Online) ; 63(6): 608-617, Nov.-Dec. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055027

RESUMO

ABSTRACT The somatotropic axis is the main hormonal regulator of growth. Growth hormone (GH), also known as somatotropin, and insulin-like growth factor 1 (IGF-1) are the key components of the somatotropic axis. This axis has been studied for a long time and the knowledge of how some molecules could promote or impair hormones production and action has been growing over the last decade. The enhancement of large-scale sequencing techniques has expanded the spectrum of known genes and several other candidate genes that could affect the GH-IGF1-bone pathway. To date, defects in more than forty genes were associated with an impairment of the somatotropic axis. These defects can affect from the secretion of GH to the bioavailability and action of IGF-1. Affected patients present a large heterogeneous group of conditions associated with growth retardation. In this review, we focus on the description of the GH-IGF axis genetic defects reported in the last decade. Arch Endocrinol Metab. 2019;63(6):608-17


Assuntos
Humanos , Fator de Crescimento Insulin-Like I/genética , Hormônio do Crescimento Humano/deficiência , Hormônio do Crescimento Humano/genética , Transtornos do Crescimento/genética , Mutação/genética , Fenótipo , Fator de Crescimento Insulin-Like I/metabolismo , Transdução de Sinais , Genótipo , Transtornos do Crescimento/metabolismo
3.
Arch. endocrinol. metab. (Online) ; 63(1): 70-78, Jan.-Feb. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-989290

RESUMO

ABSTRACT Short stature is a common feature, and frequently remains without a specific diagnosis after conventional clinical and laboratorial evaluation. Longitudinal growth is mainly determined by genetic factors, and hundreds of common variants have been associated to height variability among healthy individuals. Although isolated short stature may be caused by the combination of variants, with a deleterious impact on the growth of individuals with polygenic inheritance, recent studies have pointed out some monogenic defects as the cause of the growth disorder observed in nonsyndromic children. The majority of these defects are in genes related to the growth plate cartilage and in the growth hormone (GH) - insulin-like growth factor 1 (IGF-1) axis. Affected patients usually present the mildest spectrum of some forms of skeletal dysplasia, or subtle abnormalities of laboratory tests, suggesting hormonal resistance or insensibility. The lack of specific characteristics, however, does not allow formulation of a definitive diagnosis without the use of broad genetic studies. Thus, molecular genetic studies including panels of genes or exome analysis will become essential in investigating and identifying the causes of isolated short stature in children, with a crucial impact on treatment and follow-up.


Assuntos
Humanos , Variação Genética/genética , Estatura/genética , Fator de Crescimento Insulin-Like I/genética , Hormônio do Crescimento Humano/genética , Transtornos do Crescimento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA