Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 256(4): 69, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066773

RESUMO

MAIN CONCLUSION: The pUceS8.3 is a constitutive gene promoter with potential for ectopic and strong genes overexpression or active biomolecules in plant tissues attacked by pests, including nematode-induced giant cells or galls. Soybean (Glycine max) is one of the most important agricultural commodities worldwide and a major protein and oil source. Herein, we identified the soybean ubiquitin-conjugating (E2) enzyme gene (GmUBC4; Glyma.18G216000), which is significantly upregulated in response to Anticarsia gemmatalis attack and Meloidogyne incognita-induced galls during plant parasitism by plant nematode. The GmUBC4 promoter sequence and its different modules were functionally characterized in silico and in planta using transgenic Arabidopsis thaliana and G. max lines. Its full-length transcriptional regulatory region (promoter and 5´-UTR sequences, named pUceS8.3 promoter) was able to drive higher levels of uidA (ß-glucuronidase) gene expression in different tissues of transgenic A. thaliana lines compared to its three shortened modules and the p35SdAMV promoter. Notably, higher ß-glucuronidase (GUS) enzymatic activity was shown in M. incognita-induced giant cells when the full pUceS8.3 promoter drove the expression of this reporter gene. Furthermore, nematode-specific dsRNA molecules were successfully overexpressed under the control of the pUceS8.3 promoter in transgenic soybean lines. The RNAi gene construct used here was designed to post-transcriptionally downregulate the previously characterized pre-mRNA splicing factor genes from Heterodera glycines and M. incognita. A total of six transgenic soybean lines containing RNAi gene construct were selected for molecular characterization after infection with M. incognita pre-parasitic second-stage (ppJ2) nematodes. A strong reduction in the egg number produced by M. incognita after parasitism was observed in those transgenic soybean lines, ranging from 71 to 92% compared to wild-type control plants. The present data demonstrated that pUceS8.3 is a gene promoter capable of effectively driving dsRNA overexpression in nematode-induced giant cells of transgenic soybean lines and can be successfully applied as an important biotechnological asset to generate transgenic crops with improved resistance to root-knot nematodes as well as other pests.


Assuntos
Arabidopsis , Tylenchoidea , Animais , Arabidopsis/genética , Glucuronidase/genética , Plantas Geneticamente Modificadas/genética , RNA de Cadeia Dupla/genética , Glycine max/genética , Tylenchoidea/genética
2.
Arch Virol ; 164(7): 1753-1760, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025116

RESUMO

The expression of several structural proteins from a wide variety of viruses in heterologous cell culture systems results in the formation of virus-like particles (VLPs). These VLPs structurally resemble the wild-type virus particles and have been used to study viral assembly process and as antigens for diagnosis and/or vaccine development. Tomato blistering mosaic virus (ToBMV) is a tymovirus that has a 6.3-kb positive-sense ssRNA genome. We have employed the baculovirus expression vector system (BEVS) for the production of tymovirus-like particles (tVLPs) in insect cells. Two recombinant baculoviruses containing the ToBMV wild-type coat protein (CP) gene or a modified short amino-terminal deletion (Δ2-24CP) variant were constructed and used to infect insect cells. Both recombinant viruses were able to express ToBMV CP and Δ2-24CP from infected insect cells that self-assembled into tVLPs. Therefore, the N-terminal residues (2-24) of the native ToBMV CP were shown not to be essential for self-assembly of tVLPs. We also constructed a third recombinant baculovirus containing a small sequence coding for the major epitope of the chikungunya virus (CHIKV) envelope protein 2 (E2) replacing the native CP N-terminal 2-24 amino acids. This recombinant virus also produced tVLPs. In summary, ToBMV VLPs can be produced in a baculovirus/insect cell heterologous expression system, and the N-terminal residues 2-24 of the CP are not essential for this assembly, allowing its potential use as a protein carrier that facilitates antigen purification and might be used for diagnosis.


Assuntos
Baculoviridae/genética , Proteínas do Capsídeo/biossíntese , Tymovirus/crescimento & desenvolvimento , Tymovirus/genética , Proteínas do Envelope Viral/biossíntese , Montagem de Vírus/genética , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus Chikungunya/genética , Expressão Gênica/genética , Solanum lycopersicum/virologia , Mariposas/citologia , Proteínas do Envelope Viral/genética
3.
Mol Biol Rep ; 46(1): 97-103, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30367403

RESUMO

Plants are becoming an interesting alternative system for the heterologous production of pharmaceutical proteins, providing a more scalable, cost-effective, and biologically safer option than the current expression systems. The development of plant virus expression vectors has allowed rapid and high-level transient expression of recombinant genes, and, in turn, provided an attractive plant-based production platform. Here we report the development of vectors based on the tobamovirus Pepper mild mottle virus (PMMoV) to be used in transient expression of foreign genes. In this PMMoV vector, a middle part of the viral coat protein gene was replaced by the green fluorescent protein (GFP) gene, and this recombinant genome was assembled in a binary vector suitable for plant agroinoculation. The accumulation of GFP was evaluated by observation of green fluorescent signals under UV light and by western blotting. Furthermore, by using this vector, the multiepitope gene for chikungunya virus was successfully expressed and confirmed by western blotting. This PMMoV-based vector represents an alternative system for a high-level production of heterologous protein in plants.


Assuntos
Vetores Genéticos/genética , Engenharia de Proteínas/métodos , Tobamovirus/genética , Proteínas do Capsídeo/genética , Regulação da Expressão Gênica de Plantas/genética , Genes Virais , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Proteômica , Tobamovirus/metabolismo , Tobamovirus/fisiologia
4.
Virus Genes ; 49(1): 169-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24756556

RESUMO

Pepper ringspot virus (PepRSV) is a tobravirus reported only in Brazil. Here, the sequences of the complete RNA 2 segments and the 3' end of the RNA 1 genomic regions of two new isolates from tomato plants were analyzed. The main ORF encodes the CP gene as other tobraviruses and termed ORF 1 of RNA 2. The second ORF was found only in one of the new isolates, although this gene was absent in the type isolate, CAM (collected in the 1960's). Interestingly, this ORF 2 gene did not show any nucleotide and amino acid sequence similarities with known 2b genes of tobraviruses, an essential gene of tobraviruses for nematodes-transmission. The 5'UTR sequence of RNA 2 segment of CAM isolate was previously reported showing two impaired direct repeats; however, the direct-repeats were absent in these new isolates. An additional ORF was predicted upstream of the CP gene. This putative protein possessed a transmembrane domain similar to the ORFN1 of RNA 2 of Tobacco rattle virus SYM isolate, although there was no sequence similarity. This is the first report on the diversity of the RNA 2 sequences of PepRSV.


Assuntos
Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Solanum lycopersicum/virologia , Brasil , Dados de Sequência Molecular , Fases de Leitura Aberta , Doenças das Plantas/virologia , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Virais/genética
5.
Appl Microbiol Biotechnol ; 97(20): 9021-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23925532

RESUMO

Binary vector-based transient expression of heterologous proteins in plants is a very attractive strategy due to the short time required for proceeding from planning to expression. However, this expression system is limited by comparatively lower yields due to strong post-transcriptional gene silencing (PTGS) in the host plants. The aim of this study was to optimize a procedure for expression of norovirus virus-like particles (VLPs) in plants using a binary vector with co-expression of a PTGS suppressor to increase the yield of the target protein. The effects of four plant viral PTGS suppressors on protein expression were evaluated using green fluorescent protein (GFP) as a reporter. Constructs for both GFP and PTGS suppressor genes were co-infiltrated in Nicotiana benthamiana plants, and the accumulation of GFP was evaluated. The most effective PTGS suppressor was the 126K protein of Pepper mild mottle virus. Therefore, this suppressor was selected as the norovirus capsid gene co-expression partner for subsequent studies. The construct containing the major (vp1) and minor capsid (vp2) genes with a 3'UTR produced a greater amount of protein than the construct with the major capsid gene alone. Thus, the vp1-vp2-3'UTR and 126K PTGS suppressor constructs were co-infiltrated at middle scale and VLPs were purified by sucrose gradient centrifugation. Proteins of the expected size, specific to the norovirus capsid antibody, were observed by Western blot. VLPs were observed by transmission electron microscopy. It was concluded that protein expression in a binary vector co-expressed with the 126K PTGS suppressor protein enabled superior expression and assembly of norovirus VLPs.


Assuntos
Nicotiana/genética , Nicotiana/virologia , Vírus Norwalk/fisiologia , Interferência de RNA , Montagem de Vírus , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Expressão Gênica , Genes Supressores , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Vírus Norwalk/genética , Supressão Genética , Nicotiana/metabolismo
6.
Appl Microbiol Biotechnol ; 97(13): 5721-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23615743

RESUMO

Dengue virus causes about 100 million cases of dengue disease per year in the world. Laboratory diagnosis is done mainly by serological techniques, which in many cases use crude virus extracts that may cause cross-reactions to other flaviviruses. These undesirable cross-reactions can be reduced or eliminated by using recombinant proteins based on restricted epitopes. Aiming to decrease flaviviral cross-reactions and non-specific interactions in dengue serological assays, a plant expression system was chosen for recombinant antigen production as a reliable and inexpensive dengue diagnostic tool. In the present report, the lettuce plastid transformation system was applied to achieve efficient and stable tetra-epitope peptide antigen production, and its reactivity was evaluated. For this purpose, one putative epitope at positions 34 to 57 of E protein within the junction site of domains I and II of dengue virus (DENV) 1 to 4 serotypes linked by glycine linkers was expressed in lettuce chloroplasts. The potential immunoreactivity for the four DENV serotypes was evaluated using sera from patients of positive and negative dengue cases. Results indicated an overall sensitivity of 71.7% and specificity of 100%. No cross-reactions with the sera of yellow fever-positive or healthy individuals vaccinated against yellow fever were observed. This novel approach may provide an alternative system for the large-scale production of dengue recombinant antigens useful for serodiagnosis.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais , Vírus da Dengue/imunologia , Dengue/diagnóstico , Epitopos/imunologia , Proteínas do Envelope Viral/imunologia , Antígenos Virais/genética , Cloroplastos/genética , Reações Cruzadas , Vírus da Dengue/genética , Epitopos/genética , Vetores Genéticos , Humanos , Lactuca/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , RNA Viral/genética , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...